DOI QR코드

DOI QR Code

A Study on the Spatial Distribution Patterns of Urban Green Spaces Using Local Spatial Autocorrelation Statistics

국지적 공간자기상관통계를 이용한 도시녹지의 공간적 분포패턴에 관한 연구

  • Kim, Yun-Ki (Department of Land Management, Choengju University)
  • Received : 2020.02.21
  • Accepted : 2020.06.12
  • Published : 2020.06.30

Abstract

The primary purpose of this study is to compare and analyze the performance of local spatial autocorrelation techniques in identifying spatial distribution patterns of green spaces. To achieve the objective, this researcher uses satellite image analysis and spatial autocorrelation techniques. The result of the study shows that the LISA cluster map with the spatial outlier cluster is superior to other analytical methods in identifying the spatial distribution pattern of urban green space. This study can contribute to the related fields in that it uses several different research methods than the existing ones. Despite this differentiation and usefulness, this study has limitations in using low-resolution satellite imagery and NDVI among vegetation indices in identifying spatial distribution patterns of green areas. These limitations may be overcome in future studies by using UAV images or by simultaneously using several vegetation indices.

본 연구의 주된 목적은 녹지의 공간 분포 패턴을 식별하는데 있어 국지적 공간자기상관 기법들의 성능을 비교하고 분석하는 것이다. 이 연구목적을 달성하기 위해 본 연구는 위성영상분석기법과 공간자기상관기법들을 이용하였다. 분석의 결과 공간 특이치 군집을 갖는 LISA 군집지도가 도시녹지의 공간 분포 패턴을 식별하는 데 있어서 다른 분석기법들보다 우수함이 확인되었다. 본 연구는 기존의 연구들과는 다른 몇 가지 연구방법을 이용했다는 점에서 관련분야에 기여할 수 있다. 이러한 차별성과 유용성에도 불구하고 본 연구는 녹지의 공간적 분포패턴을 식별하는 있어서 저해상도 위성영상을 이용했다는 점과 식생지수들 중에서 NDVI만을 이용했다는 점에서 한계를 지닌다. 이러한 한계들은 향후연구에서 UAV영상을 이용하거나 또는 여러 가지 식생지수들을 동시에 이용한다면 극복될 수 있을 것이다.

Keywords

References

  1. Abelt K, McLafferty S. 2017. Green streets: urban green and birth outcomes. International journal of environmental research and public health. 14(7):771. https://doi.org/10.3390/ijerph14070771
  2. Anguluri R, Narayanan P. 2017. Role of green space in urban planning: Outlook towards smart cities. Urban Forestry & Urban Greening. 25:58-65. https://doi.org/10.1016/j.ufug.2017.04.007
  3. Anselin L. 1995. Local indicators of spatial association- LISA. Geographical analysis. 27(2):93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  4. Anselin L, 2019. A local indicator of multivariate spatial association: extending Geary's C. Geographical Analysis. 51(2):133-150. https://doi.org/10.1111/gean.12164
  5. Anselin L, Syabri I, Kho Y. 2006. GeoDa: an introduction to spatial data analysis. Geographical analysis. 38(1):5-22. https://doi.org/10.1111/j.0016-7363.2005.00671.x
  6. Avdan U, Jovanovska G. 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors.
  7. Bao S, Henry M. 1996. Heterogeneity issues in local measurements of spatial association. Geographical Systems. 3:1-14.
  8. Bao T, Li X, Zhang J, Zhang Y, Tian S. 2016. Assessing the distribution of urban green spaces and its anisotropic cooling distance on urban heat island pattern in Baotou. China. ISPRS International Journal of Geo-Information. 5(2):12. https://doi.org/10.3390/ijgi5020012
  9. Baruch-Mordo, Breck SW, Wilson KR, Theobald DM. 2008. Spatiotemporal distribution of black bear‐human conflicts in Colorado. USA. The Journal of Wildlife Management. 72(8):1853-1862. https://doi.org/10.2193/2007-442
  10. Bhatti SS, Tripathi NK. 2014. Built-up area extraction using Landsat 8 OLI imagery. GIScience sensing. 51(4):445-467. https://doi.org/10.1080/15481603.2014.939539
  11. Bivand R. 2002. Spatial econometrics functions in R: Classes and methods. Journal of geographical systems. 4(4):405-421. https://doi.org/10.1007/s101090300096
  12. Bivand R. 2006. Implementing spatial data analysis software tools in R. Geographical Analysis. 38(1):23-40. https://doi.org/10.1111/j.0016-7363.2005.00672.x
  13. Bivand R. 2009. Applying measures of spatial autocorrelation: computation and simulation. Geographical Analysis. 41(4):375-384. https://doi.org/10.1111/j.1538-4632.2009.00764.x
  14. Carlson TN, Ripley DA. 1997. On the relation between NDVI. fractional vegetation cover. and leaf area index. Remote sensing of Environment. 62(3):241-252. https://doi.org/10.1016/S0034-4257(97)00104-1
  15. Cima EG, Uribe-Opazo MA, Johann JA, Rocha Jr WFD, Dalposso GH. 2018. Analysis of spatial autocorrelation of grain production and agricultural storage in Parana. Engenharia Agricola. 38(3):395-402. https://doi.org/10.1590/1809-4430-eng.agric.v38n3p395-402/2018
  16. Dalposso GH, Uribe-Opazo MA, Mercante E, Lamparelli RA. 2013. Spatial autocorrelation of NDVI and GVI indices derived from Landsat/TM images for soybean crops in the western of the state of Parana in 2004/2005 crop season. Engenharia Agricola. 33(3):525-537. https://doi.org/10.1590/S0100-69162013000300009
  17. de Mexico CE. 2017. Spatial modeling of forest fires in Mexico: an integration of two sources. Bosque. 38(3):563-574. https://doi.org/10.4067/s0717-92002017000300014
  18. Dwyer MC, Miller RW. 1999. Using GIS to assess urban tree canopy benefits and surrounding greenspace distributions. Journal of Arboriculture. 25:102-107.
  19. El-Gammal MIARR, Samra RA. 2014. NDVI threshold classification for detecting vegetation cover in Damietta governorate. Egypt. Journal of American Science. 10(8):108-113.
  20. Fu WJ, Jiang PK, Zhou GM, Zhao KL. 2014. Using Moran's I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences. 11(8):2401-2409. https://doi.org/10.5194/bg-11-2401-2014
  21. Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G, Valentini R. 1995. Relationships between NDVI. canopy structure. and photosynthesis in three Californian vegetation types. Ecological Applications. 5(1):28-41. https://doi.org/10.2307/1942049
  22. Gandhi GM, Parthiban S, Thummalu N, Christy A. 2015. NDVI: vegetation change detection using remote sensing and GIS-a case study of Vellore District. Procedia Computer Science. 57:1199-1210. https://doi.org/10.1016/j.procs.2015.07.415
  23. Georgi JN, Dimitriou D. 2010. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania. Greece. Building and environment. 45(6):1401-1414. https://doi.org/10.1016/j.buildenv.2009.12.003
  24. Getis A. 2008. A history of the concept of spatial autocorrelation: A geographer's perspective. Geographical Analysis. 40(3):297-309. https://doi.org/10.1111/j.1538-4632.2008.00727.x
  25. Haaland C, van den Bosch CK. 2015. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban forestry & urban greening. 14(4):760-771. https://doi.org/10.1016/j.ufug.2015.07.009
  26. Han TTN, Hoa PK, Khoa HB, Van TT. 2018. Understanding Satellite Image-Based Green Space Distribution for Setting up Solutions on Effective Urban Environment Management. In Multidisciplinary Digital Publishing Institute Proceedings. 2(10):570.
  27. Hoffimann E, Barros H, Ribeiro A. 2017. Socioeconomic inequalities in green space quality and accessibility-Evidence from a Southern European city. International journal of environmental research and public health. 14(8):916. https://doi.org/10.3390/ijerph14080916
  28. Jacquez GM. 2000. Spatial analysis in epidemiology: Nascent science or a failure of GIS?. Journal of Geographical Systems. 2(1): 91-97. https://doi.org/10.1007/s101090050035
  29. Jennings V, Larson L, Yun J. 2016. Advancing sustainability through urban green space: Cultural ecosystem services. equity. and social determinants of health. International Journal of environmental research and public health. 13(2) 196. https://doi.org/10.3390/ijerph13020196
  30. Keller W, Shiue CH. 2007. The origin of spatial interaction. Journal of Econometrics. 140(1):304-332. https://doi.org/10.1016/j.jeconom.2006.09.011
  31. Kong F, Yin H, Nakagoshi N, Zong Y. 2010. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landscape and urban planning. 95(1-2):16-27. https://doi.org/10.1016/j.landurbplan.2009.11.001
  32. Kosfeld R, Lauridsen J. 2012. Identifying clusters within R&D intensive industries using local spatial methods.
  33. Lee SI. 2001. Developing a bivariate spatial association measure: an integration of Pearson's r and Moran's I. Journal of geographical systems. 3(4):369-385. https://doi.org/10.1007/s101090100064
  34. Le Gallo J, Ertur C. 2003. Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe 1980-1995. Papers in regional science. 82(2):175-201. https://doi.org/10.1111/j.1435-5597.2003.tb00010.x
  35. Leung Y, Mei CL, Zhang WX. 2003. Statistical test for local patterns of spatial association. Environment and Planning A. 35(4):725-744. https://doi.org/10.1068/a3550
  36. Levine N. 2013. Hot spot analysis of zones. N Levine. CrimeStat: Spatial Statistics Program for the Analysis of Crime Incident Locations. Version. 4 242960-242995.
  37. Lwin K, Murayama Y. 2009. A GIS Approach to Estimation of Building Population for Microspatial Analysis. Transactions in GIS. 13(4):401-414. https://doi.org/10.1111/j.1467-9671.2009.01171.x
  38. Machiwal D, Mishra A, Jha MK, Sharma A, Sisodia SS. 2012. Modeling short-term spatial and temporal variability of groundwater level using geostatistics and GIS. Natural resources research. 21(1):117-136. https://doi.org/10.1007/s11053-011-9167-8
  39. Maimaitiyiming M, Ghulam A, Tiyip T, Pla F, Latorre-Carmona P, Halik U, Caetano M. 2014. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing. 89:59-66. https://doi.org/10.1016/j.isprsjprs.2013.12.010
  40. Majumdar DD, Biswas A. 2016. Quantifying land surface temperature change from LISA clusters: An alternative approach to identifying urban land use transformation. Landscape and Urban Planning. 153:51-65. https://doi.org/10.1016/j.landurbplan.2016.05.001
  41. McCauley LA, Jenkins DG. 2005. GIS‐based estimates of former and current depressional wetlands in an agricultural landscape. Ecological Applications. 15(4):1199-1208. https://doi.org/10.1890/04-0647
  42. McConnachie MM, Shackleton CM. 2010. Public green space inequality in small towns in South Africa. Habitat International. 34(2):244-248. https://doi.org/10.1016/j.habitatint.2009.09.009
  43. M'Ikiugu MM, Kinoshita I, Tashiro Y. 2012. Urban green space analysis and identification of its potential expansion areas. Procedia-Social and Behavioral Sciences. 35:449-458. https://doi.org/10.1016/j.sbspro.2012.02.110
  44. Myint SW, Wentz EA, Purkis SJ. 2007. Employing spatial metrics in urban land-use/land-cover mapping. Photogrammetric Engineering & Remote Sensing. 73(12):1403-1415. https://doi.org/10.14358/PERS.73.12.1403
  45. Noce S, Collalti A, Valentini R, Santini M. 2016. Hot spot maps of forest presence in the Mediterranean basin. iForest-Biogeosciences and Forestry. 9(5):766. https://doi.org/10.3832/ifor1802-009
  46. Ord JK, Getis A. 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geographical analysis. 27(4):286-306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
  47. Orner I, Benenson I. 2002. Investigating fine-scale residential segregation by means of local spatial statistics. In Geography Research Forum. 22:41-60.
  48. Peng L. 1987. DISTRIBUTION OF MANGROVE SPECIES [J]. Scientia Silvae Sinicae. 4.
  49. Pernas JB. Garcia MLL. 2015. Modelling spatial patterns and temporal trends of wildfires in Galicia (NW Spain). Forest Systems. 24(2):1. https://doi.org/10.5424/fs/2015241-03010
  50. Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution. 20(9):503-510. https://doi.org/10.1016/j.tree.2005.05.011
  51. Rouse Jr J, Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the Great Plains with ERTS.
  52. Shackleton S, Chinyimba A, Hebinck P, Shackleton C, Kaoma H. 2015. Multiple benefits and values of trees in urban landscapes in two towns in northern South Africa. Landscape and Urban Planning. 136:76-86. https://doi.org/10.1016/j.landurbplan.2014.12.004
  53. Sokal RR, Oden NL, Thomson BA. 1998. Local spatial autocorrelation in a biological model. Geographical Analysis. 30(4):331-354. https://doi.org/10.1111/j.1538-4632.1998.tb00406.x
  54. Tian Y, Jim CY, Tao Y, Shi T. 2011. Landscape ecological assessment of green space fragmentation in Hong Kong. Urban Forestry & Urban Greening. 10(2):79-86. https://doi.org/10.1016/j.ufug.2010.11.002
  55. Tiefelsdorf M. 2002. The saddlepoint approximation of Moran's I's and local Moran's Ii's reference distributions and their numerical evaluation. Geographical Analysis. 34(3):187-206. https://doi.org/10.1353/geo.2002.0018
  56. Truong LT. Somenahalli SV. 2011. Using GIS to identify pedestrian-vehicle crash hot spots and unsafe bus stops. Journal of Public Transportation. 14(1):6.
  57. Tsai PJ, Lin ML, Chu CM, Perng CH. 2009. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006. BMC Public Health. 9(1):464. https://doi.org/10.1186/1471-2458-9-464
  58. Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, El Saleous N. (2005). An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing. 26(20):4485-4498. https://doi.org/10.1080/01431160500168686
  59. Waldhor T. 1996. The spatial autocorrelation coefficient Moran's I under Heteroscedasticity. Statistics in Medicine. 15(7-9): 887-892. https://doi.org/10.1002/(SICI)1097-0258(19960415)15:7/9<887::AID-SIM257>3.0.CO;2-E
  60. Wang J, Xu C, Pauleit S, Kindler A, Banzhaf E. 2019a. Spatial patterns of urban green infrastructure for equity: A novel exploration. Journal of Cleaner Production. 238:117858. https://doi.org/10.1016/j.jclepro.2019.117858
  61. Wang WC, Chang YJ, Wang HC. 2019b. An Application of the Spatial Autocorrelation Method on the Change of Real Estate Prices in Taitung City. ISPRS International Journal of Geo-Information. 8(6):249. https://doi.org/10.3390/ijgi8060249
  62. Wen M, Zhang X, Harris CD, Holt JB, Croft JB. 2013. Spatial disparities in the distribution of parks and green spaces in the USA. Annals of Behavioral Medicine. 45(suppl_1):S18-S27.
  63. Wustemann H, Kalisch D, Kolbe J. 2017. Access to urban green space and environmental inequalities in Germany. Landscape and Urban Planning. 164:124-131. https://doi.org/10.1016/j.landurbplan.2017.04.002
  64. Xu D, Guo X. 2014. Compare NDVI extracted from Landsat 8 imagery with that from Landsat 7 imagery. American Journal of Remote Sensing. 2(2):10-14. https://doi.org/10.11648/j.ajrs.20140202.11
  65. You J. Nedovic‐Budic Z. Kim TJ. 1998. A GISbased traffic analysis zone design: implementation and evaluation. Transportation Planning and Technology. 21(1-2):69-91. https://doi.org/10.1080/03081069708717602
  66. Zhang H, Xue L, Yang C, Chen X, Zhang L, Wei G. 2018. Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River. In IOP Conference Series: Earth and Environmental Science. 108(3):032058. IOP Publishing. https://doi.org/10.1088/1755-1315/108/3/032058
  67. Zhou X, Parves Rana M. 2012. Social benefits of urban green space: A conceptual framework of valuation and accessibility measurements. Management of Environmental Quality.