• 제목/요약/키워드: UAV : Unmanned Aerial Vehicle

검색결과 794건 처리시간 0.034초

감시용 동축로터 비행로봇의 개발 (Development of a Coaxial Rotor Flying Robot for Observation)

  • 강민성;신진옥;박상덕;황세희;조국;김덕후;지상기
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.

40% 축소형 스마트 무인기 비행제어기 설계 (Attitude SCAS Design for 40% Scaled Smart UAV)

  • 이장호;황태원;최지영;김응태
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 2007
  • 40% 축소형 스마트 무인기의 자율비행을 위한 자세 및 자세각속도 제어기를 설계하였다. 19개 설계점에서 축약된 시스템 운동방정식을 유도하였다. 운동방정식으로부터 설계요구 조건인 시간 응답을 만족 할 수 있는 제어기 이득을 해석적인 방법으로 선정하였다. 각 설계 점마다 구동기 및 통신 시간 지연을 고려한 안정도 여유를 구하였다 또한, 슬라이딩 모드 제어이론을 적용한 강건 제어기를 설계하여 선형 제어기와 성능 비교를 하였다. 설계된 제어기를 비선형 모델에 적용한 응답 결과로부터 제어 로직의 성능 및 적용 가능성을 평가하였다.

  • PDF

스마트무인기 틸트로터용 짐발허브 설계 (Design of Gimbal Hub for Smart UAV Tilt Rotor)

  • 이주영;김재무;이명규
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.625-634
    • /
    • 2007
  • KARI SUAV program was initiated to develop a Smart Unmanned Aerial Vehicle with innovative smart technologies. SUAV is a tilt rotor aircraft of which rotor system is 3-bladed, gimbaled hub type. Several existing concepts of gimbaled hub were analyzed and compared to investigate the applicability to SUAV rotor system design. From the result of these investigations, it was concluded that a new design concept of low cost and high reliability characteristics was necessary for the rotor hub development of SUAV. The design requirements of new gimbal hub concept and the design results were presented. Also, the analysis results to verify the satisfaction of design requirements of SUAV rotor system were presented.

Obstacle Awareness and Collision Avoidance Radar Sensor System for Smart UAV

  • Kwag, Young K.;Hwang, Kwang Y.;Kang, Jung W.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권2호
    • /
    • pp.97-109
    • /
    • 2005
  • In this paper, the critical requirement for obstacle awareness and avoidance is assessed with the compliance of the equivalent level of safety regulation, and then the collision avoidance sensor system is presented with the key design parameters for the requirement of the smart unmanned aerial vehicle in low-altitude flight. Based on the assessment of various sensors, small-sized radar sensor is selected for the suitable candidate due to the real-time range and range-rate acquisition capability of the stationary and moving aircraft even under all-weather environments. Through the performance analysis for the system requirement, the conceptual design result of radar sensor model is proposed with the range detection probability and collision avoidance mode is established based on the time-to-collision, which is analyzed by collision scenario.

3 Dimensional Augmented Reality Flight for Drones

  • Park, JunMan;Kang, KiBeom;Jwa, JeongWoo;Won, JoongHie
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권2호
    • /
    • pp.13-18
    • /
    • 2018
  • Drones are controlled by the remote pilot from the ground stations using the radio control or autonomously following the pre-programmed flight plans. In this paper, we develop a method and an optimal path search system for providing 3D augmented reality flight (ARF) images for safe and efficient flight control of drones. The developed system consisted of the drone, the ground station and user terminals, and the optimal path search server. We use the Dijkstra algorithm to find the optimal path considering the drone information, flight information, environmental information, and flight mission. We generate a 3D augmented reality flight (ARF) image overlaid with the path information as well as the drone information and the flight information on the flight image received from the drone. The ARF image for adjusting the drone is generated by overlaying route information, drone information, flight information, and the like on the image captured by the drone.

Opportunities for construction site monitoring by adopting first personal view (FPV) of a drone

  • Kim, Seungho;Kim, Sangyong
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.139-149
    • /
    • 2018
  • Understanding the current status of a construction project is necessary to achieve successful on-site management. Real-time information delivery is a major concern for construction industry practitioners in order to expedite decisions and discussions. We propose the use of a first personal view (FPV) system of a quadcopter drone as a tool for monitoring on-site status and communicating between construction participants. The most important function of the drone FPV system is its ability to visually monitor construction site situations in real time. An on-site management system process is developed, verified, and applied to several construction work tasks after determining factors that affect efficient construction management. The proposed system is expected to assist the construction manager in achieving high efficiency.

신경회로망을 이용한 틸트로터 항공기의 적응 비행제어기 설계 및 비행성 평가 (Neural Networks Based Adaptive Flight Controller Design and Handling Quality Evaluation for Tiltrotor Aircraft)

  • 이기영;김병수
    • 한국항공운항학회지
    • /
    • 제21권3호
    • /
    • pp.1-8
    • /
    • 2013
  • An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.

Region Defense Technique Using Multiple Satellite Navigation Spoofing Signals

  • Lee, Chi-Hun;Choi, Seungho;Lee, Young-Joong;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권3호
    • /
    • pp.173-179
    • /
    • 2022
  • The satellite navigation deception technology disturbs the navigation solution of the receiver by generating a deceptive signal simulating the actual satellite for the satellite navigation receiver mounted on the unmanned aerial vehicle, which is the target of deception. A single spoofing technique that creates a single deceptive position and velocity can be divided into a synchronized spoofing signal that matches the code delay, Doppler frequency, and navigation message with the real satellite and an unsynchronized spoofing signal that does not match. In order to generate a signal synchronized with a satellite signal, a very sophisticated and high precision signal generation technology is required. In addition, the current position and speed of the UAV equipped with the receiver must be accurately detected in real time. Considering the detection accuracy of the current radar technology that detects small UAVs, it is difficult to detect UAVs with an accuracy of less than one chip. In this paper, we assume the asynchrony of a single spoofing signal and propose a region defense technique using multiple spoofing signals.

실시간 방재형 무인비행체의 HIL시뮬레이션을 위한 환경 개발 (Development of Environment for HIL Simulation of Real-time Disaster-Prevention UAV(Unmanned Aerial Vehicle))

  • 정덕원;민덕기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.796-799
    • /
    • 2009
  • 재해 및 재난 발생에 따른 피해를 최소화하고자 무인헬기 기술과 IT기술의 실시간 방재 시스템을 융합하여 광범위한 환경을 대상으로 실시간 다각적 정보수집 기능을 제공하는 연구가 진행 중이다. 소형무인헬기에 개량된 자동항법기능과 무선 네트워크 기반의 실시간 멀티미디어 중계기능을 탑재하고 쉽게 사용 할 수 있는 지상관제시스템을 개발하여 대형재난 현장에 사용하면 다각적 동영상과 재해 현장 정보를 실시간으로 제공함으로써 초기 대응을 할 수 있어 재난의 확산을 최대한 방지 할 수 있다. 본 논문에서는 이러한 시스템을 보다 효과적으로 개발하기 위한 HILS(Hardware in the Loop Simulation) 기반 무인헬기 시뮬레이션 환경을 개발하고자 한다.

Design of an FPGA-Based RTL-Level CAN IP Using Functional Simulation for FCC of a Small UAV System

  • Choe, Won Seop;Han, Dong In;Min, Chan Oh;Kim, Sang Man;Kim, Young Sik;Lee, Dae Woo;Lee, Ha-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.675-687
    • /
    • 2017
  • In the aerospace industry, we have produced various models according to operational conditions and the environment after development of the base model is completed. Therefore, when design change is necessary, there are modification and updating costs of the circuit whenever environment variables change. For these reasons, recently, in various fields, system designs that can flexibly respond to changing environmental conditions using field programmable gate arrays (FPGAs) are attracting attention, and the rapidly changing aerospace industry also uses FPGAs to organize the system environment. In this paper, we design the controller area network (CAN) intellectual property (IP) protocol used instead of the avionics protocol that includes ARINC-429 and MIL-STD-1553, which are not suitable for small unmanned aerial vehicle (UAV) systems at the register transistor logic (RTL) level, which does not depend on the FPGA vender, and we verify the performance. Consequentially, a Spartan 6 FPGA model-based system on chip (SoC) including an embedded system is constructed by using the designed CAN communications IP and Xilinx Microblaze, and the configured SoC only recorded an average 32% logic element usage rate in the Spartan 6 FPGA model.