• Title/Summary/Keyword: UAV(Unmanned Aerial Vehicles)

Search Result 294, Processing Time 0.025 seconds

Analysis of Thrust Characteristics with Propeller Shape for UAV (무인항공기용 프로펠러 형상에 따른 추력특성 해석)

  • Soohyeon Lee;Hwankee Cho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • A study on propllers for unmaned aerial vehicles is conducted using the open softwares. Since the shape of the propeller is closely related to the thurst characteristics of the propulsion system, adopting an appropriate propeller will significantly reflect stable aerodynamic performances. In this study, propellers for unmanned aerial vehicles were modeled by using OpenVSP and Propel for comparison, the thrust characteristics according to the number of blades and the diameter of the propeller were analyzed. In addition, the tendency of thrust characteristics according to various propeller pitch angles was confirmed. Based on the analysis results of this study, the applicability of the propeller shape to the design of the unmanned aerial vehicle was confirmed. It is shownthat the analysis results of this study can be utilized when modeling the propeller shape in research such as a conceptual design of unmanned aerial vehicle. In this case, it should be noted that OpenVSP does not involve the viscous effect of air.

A design of UAV Simulation model for waypoint optimization method (웨이포인트 최적화 방법에 대한 UAV 시물레이션 모델의 디자인)

  • Niyonsaba, Eric;Jang, JongWook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.239-242
    • /
    • 2016
  • In recent years, Unmanned Aerial Vehicles (UAV) have been developed for both military and civilian activities in regions where the presence of onboard human pilots is risky or not necessary. However, UAV require a high demand of power to achieve its missions such as taking images/videos in a certain area or surveillance activities. Therefore, this situation triggers the need of techniques to reduce power consumption for UAV to complete its mission safely. One of the methods is to use a waypoint optimization procedure which deals with a pre-specified set of waypoints to find a minimum route to fly through those waypoints in order to reduce power consumption. In this paper, due to the UAV's multidisciplinary which makes it impossible to be represented as an analytical model, we design a simulation model of UAV using MATLAB Simulink and AeroSim Blockset, an analysis package in aerospace industry. The simulation model is then coupled with optimization algorithms along with a set of waypoints (flight path) in order to measure at which percentage power consumption can be minimized for UAV.

  • PDF

Characteristics Analysis of Accident Factors of UK Civil Unmanned Aircraft Using SHELL Model and HFACS (SHELL 모델과 HFACS를 활용한 영국 민간 무인 항공기 사고 요인 특징 분석)

  • Do Yun Kim;Jo Won Chang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The unmanned aerial vehicle industry has developed a lot, but the possibility of accidents is increasing due to potential risks. In this study, SHELL models and HFACS were used to analyze unmanned aerial vehicle accidents in the UK and to identify the main causes and characteristics of accidents. The main cause analyzed by the SHELL model was identified as an abnormality in the alarm system. The main cause of the accident analyzed by HFACS was identified as the technical environment. The common cause identified by the SHELL model and HFACS was identified as a mechanical problem of unmanned aerial vehicles. This is due to the lack of accurate information or functionality of the alarm system in the operator interface, which often prevents the operator from responding to sensitive information. Therefore, in order to prevent civil UAV accidents, the stability and reliability of the system must be secured through regular inspections of the UAV system and continuous software updates. In addition, an ergonomic approach considering human interfaces is needed when developing technologies.

A study on the Unmanned Aerial Vehicle(UAV) Flight Test Planning Establishment through Atmospheric Considerations (대기요소 고려를 통한 무인항공기 비행시험계획 수립에 대한 연구)

  • Kim, Yeong-Rae;Lee, Jeong-Suk;Lee, Sang-Cheol;Ko, Sang-Ho;Kang, Ja-Yeong;Choi, Jong-Uk;Seong, Deoky-Yong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.73-79
    • /
    • 2010
  • Flight test is the final and a mandatory process for the development of unmanned aerial vehicles(UAVs) as well as manned. Since most UAVs fly in a low speed and are prone to adverse weather conditions such as air turbulence, atmospheric weather environment around flight test regions will be a critical item to be considered for a flight test planning for UAVs. In this paper, we suggest a decision method for a UAV flight test schedule based on weather conditions of surface and upper atmospheres and also introduce a program for an effective flight test planning through weather forecasts.

Fuel Cell Powered UAV with NaBH4 as a Hydrogen Source

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.579-582
    • /
    • 2008
  • PEM Fuel cell system was designed and constructed to use as a power source of unmanned aerial vehicles(UAV) in the present study. Sodium borohydride was selected as a hydrogen source and was decomposed by catalytic hydrolysis reaction. Fuel cell system consists of a fuel cell stack, a hydrogen generation system(HGS), and power management system(PMS). HGS was composed of a catalytic reactor, micropump, fuel cartridge, and separator. Hybrid power system between lithium-polymer battery and fuel cell was developed. The fuel cell system was integrated and packaged into a blended wing-body UAV. Energy density of the total system was 1,000 $W{\cdot}hr/kg$ and high endurance more than 5 hours was accomplished in the ground tests.

  • PDF

Semantic Segmentation of Heterogeneous Unmanned Aerial Vehicle Datasets Using Combined Segmentation Network

  • Ahram, Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.87-97
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs) can capture high-resolution imagery from a variety of viewing angles and altitudes; they are generally limited to collecting images of small scenes from larger regions. To improve the utility of UAV-appropriated datasetsfor use with deep learning applications, multiple datasets created from variousregions under different conditions are needed. To demonstrate a powerful new method for integrating heterogeneous UAV datasets, this paper applies a combined segmentation network (CSN) to share UAVid and semantic drone dataset encoding blocks to learn their general features, whereas its decoding blocks are trained separately on each dataset. Experimental results show that our CSN improves the accuracy of specific classes (e.g., cars), which currently comprise a low ratio in both datasets. From this result, it is expected that the range of UAV dataset utilization will increase.

Improvement of Communication Reliability of Small UAV by a Tapered Stacked Antenna

  • Kim, Duck-Hwan;Lee, Kyu-Hwan;Kim, Young-Sik
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.796-798
    • /
    • 2006
  • This letter proposes a tapered stacked microstrip antenna for application in small unmanned aerial vehicles (UAVs), which has advantages in mountainous terrains. With its tapered structure and increased bandwidth designed to operate at the resonance frequency of 2.4 GHz, the proposed antenna improves directivity, accuracy, and precision of small UAVs. The test flight results show the proposed tapered antenna has a three times higher impedance capability of 350 MHz based on VSWR<2. The transmission pattern is also more reliable than that of previous antenna designs.

  • PDF

UAV-MEC Offloading and Migration Decision Algorithm for Load Balancing in Vehicular Edge Computing Network (차량 엣지 컴퓨팅 네트워크에서 로드 밸런싱을 위한 UAV-MEC 오프로딩 및 마이그레이션 결정 알고리즘)

  • A Young, Shin;Yujin, Lim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.437-444
    • /
    • 2022
  • Recently, research on mobile edge services has been conducted to handle computationally intensive and latency-sensitive tasks occurring in wireless networks. However, MEC, which is fixed on the ground, cannot flexibly cope with situations where task processing requests increase sharply, such as commuting time. To solve this problem, a technology that provides edge services using UAVs (Unmanned Aerial Vehicles) has emerged. Unlike ground MEC servers, UAVs have limited battery capacity, so it is necessary to optimize energy efficiency through load balancing between UAV MEC servers. Therefore, in this paper, we propose a load balancing technique with consideration of the energy state of UAVs and the mobility of vehicles. The proposed technique is composed of task offloading scheme using genetic algorithm and task migration scheme using Q-learning. To evaluate the performance of the proposed technique, experiments were conducted with varying mobility speed and number of vehicles, and performance was analyzed in terms of load variance, energy consumption, communication overhead, and delay constraint satisfaction rate.

A Study on Improvement of UAV Pilot Licensing System (무인비행장치 조종 자격증명제도 개선에 관한 고찰)

  • Park, Wontae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.79-84
    • /
    • 2017
  • This study suggests the ways of improving the training and licensing system of unmanned aerial vehicles (UAVs), which are drawing attention as a future growth industry, through interviews with domestic experts and examples from advanced countries. In order to improve the system, it was suggested to establish a clear concept about unmanned aerial vehicle pilot, to implement a system to obtain and maintain the UAV pilot license, to develop and supply standard textbooks for acquiring certification, and to prepare certification standards for flight simulators.

Driving altitude generation method with pseudo-3D building model for unmanned aerial vehicles

  • Hyeon Joong Wi;In Sung Jang;Ahyun Lee
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.240-253
    • /
    • 2023
  • Spatial information is geometrical information combined with the properties of an object. In city areas where unmanned aerial vehicle (UAV) usage demand is high, it is necessary to determine the appropriate driving altitude considering the height of buildings for safe driving. In this study, we propose a data-provision method that generates the driving altitude of UAVs with a pseudo-3D building model. The pseudo-3D building model is developed using high-precision spatial information provided by the National Geographic Information Institute. The proposed method generates the driving altitude of the UAV in terms of tile information, including the UAV's starting and arrival points and a straight line between the two points, and provides the data to users. To evaluate the efficacy of the proposed method, UAV driving altitude information was generated using data of 763 551 pseudo-3D buildings in Seoul. Subsequently, the generated driving altitude data of the UAV was verified in AirSim. In addition, the execution time of the proposed method and the calculated driving altitude were analyzed.