• Title/Summary/Keyword: UAM (Urban Air Mobility)

Search Result 92, Processing Time 0.028 seconds

A Study on the Selection of UAM Pilots and Establishment of Training

  • Choi, JiHun;Park, Sang-yong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.3
    • /
    • pp.132-139
    • /
    • 2022
  • UAM(Urban Air Mobility)은 가까운 미래에 현실이 되는 항공교통 체계로 미래 첨단 기술의 결정체이다. 비행은 인간의 생명을 절대 보장하는 숭고한 철학에 기반한다. 성공적인 UAM 개발을 위해서는 비행안전에 기초한 개발철학이 필요하며 올바른 방향을 제시해야 한다. UAM 체계와 유사한 항공교통체계는 민간항공 운항체계이며 UAM 체계의 개발을 도모하는 효과적 비교 연구대상이다. 본 연구는 민간항공 운항체계와 민간항공 조종사의 경험을 토대로 안전한 UAM 체계 개발의 방향을 제시하는 데 있다. 그중에서도 UAM 조종사 양성과 교육훈련체계 수립을 위한 방안을 제언하였다. 현존 관련법규를 검토하여 UAM 조종사 양성기준을 제시하였으며 초기 혼란을 방지하기 위한 대안을 포함하였다. 또한 민간항공기의 접근구간 항법성능을 측정하여 UAM 운항환경을 비교 예측하였다. 이를 통해 SMS 기법에 기반하여 UAM 체계의 위해요인(hazard)을 식별하여 미연에 사고를 예방할 수 있는 안전 방법론을 제시하였으며 UAM 로드맵의 올바른 정책 수립을 돕고자 한다.

Flight Routes Establishment Through the Operational Concept Analysis of Urban Air Mobility System (도심항공교통시스템 운용 개념 분석에 따른 운항경로 구축 연구)

  • Lee, Youngjae;Kwag, Tae Ho;Jeong, Gu Moon;Ahn, Jae Hyun;Chung, Bong Cheul;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.1021-1031
    • /
    • 2020
  • With the advent of industry 4.0 technologies like the artificial intelligence and the autonomous flight, 'Urban Air Mobility (UAM)' is being considered as an effective alternative to resolve the ground urban traffic congestion. Accordingly, many companies in the world including Korea are investigating on the development of UAM vehicles and operation systems. In this study, after identifying and classifying the essential elements of the UAM operation, the UAM system operational concept has been derived, then detailed analyses for each element has been performed. Based on the conceptual analysis of the UAM operation system, UAM flight routes in Seoul and Gyeong-In area have been established and confirmed to be operable through the performance analysis of UAM vehicles. The flight route analysis in this study is expected to be applied to UAM flight routes establishment in various cities in the future.

Surveillance-based Risk Assessment Model between Urban Air Mobility and Obstacles (도심 항공 모빌리티와 장애물 간의 감시장비 기반 충돌 위험도 평가모형)

  • Kim, Dongsin;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.3
    • /
    • pp.19-27
    • /
    • 2022
  • Urban Air Mobility is expected to resolve some problems in urban transportation such as traffic congestion and air pollution. Various studies for a large-scale commercialization of UAM are being actively conducted. To that end, the UAM Traffic Management system aims at securing a safety and an efficiency of UAM operations. In this study, a risk assessment model is proposed to evaluate the risk of collision between a vehicle and surrounding obstacles. The proposed model is conceived from the past studies for determining a proper separation distance between parallel runways for their independent operations. The model calculates the risk that the surveillance system fails to meet a target level of safety for a given buffer zone size between a designed route and surrounding obstacles. The model is applied to one of the routes proposed in K-UAM roadmap to evaluate its performances.

Selection of Vertiport Location, Route Setting and Operating Time Analysis of Urban Air Mobility in Metropolitan Area (수도권 도심항공 모빌리티 수직이착륙장 위치 선정, 경로 설정 및 운행 소요시간 분석)

  • Oh, Jae-Seok;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.358-367
    • /
    • 2020
  • With the increases of average commuting time of office workers in the Seoul metropolitan area and the cost of traffic congestion on roads, the need for new transportation is increasing and urban air mobility (UAM) is emerging as an alternative. Therefore, in this paper, the vertiport locations were selected and routes were established using population, traffic and commuting data of Seoul and Gyeonggi Province. Vector thrust type and multicopter type of eVTOL compatible for UAM were selected by analyzing the types of eVTOLand time required for selected routes was calculated. In addition, the time required when we utilize other transportations was compared with UAM. Finally, it was verified that the commuting time can be sharply reduced when we use UAM.

Aeroacoustic Analysis of UAM Aircraft in Ground Effect for Take-off/Landing on Vertiport (버티포트 이착륙을 고려한 지면 효과를 받는 UAM 항공기에 대한 공력소음 해석 연구)

  • Jin-Yong Yang;Hyeok-Jin Lee;Min-Je Kang;Eunmin Kim;Rho-Shin Myong;Hakjin Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.26-37
    • /
    • 2023
  • Urban air mobility (UAM) is being developed as part of the next-generation aircraft, which could be a viable solution to entrenched problems of urban traffic congestion and environmental pollution. A new airport platform called vertiport as a space where UAM can take off and land vertically is also being introduced. Noise regulations for UAM will be strict due to its operation in a highly populated urban area. Ground effects caused by vertiport can directly affect aerodynamic forces and noise characteristics of UAM. In this study, ground effects of vertiport on aerodynamic loads, vorticity field, and far-field noise were analyzed using Lattice-Boltzmann Method (LBM) simulation and Ffowcs Williams and Hawkings (FW-H) acoustic analogy with a permeable surface method.

UAM Traffic Flow Management Based on Milestone in Collaborative Decision-Making (협력적 의사결정체계(CDM) 마일스톤 기반 도심항공교통(UAM) 흐름관리)

  • Do-hyun Kim;Hyo-seok Chang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.436-441
    • /
    • 2024
  • Urban air mobility (UAM) is an innovative air traffic management system that utilizes electric vertical take off and landing aircraft(eVTOL) to transport passengers and cargo in urban areas. The corridor can be defined as the airspace that the vehicle operates in and must be collaboratively managed. For the stable operation of UAM, it is essential to have strategic separation and a collaborative decision-making(CDM) system for cooperation and coordination among stakeholders. This study examines the application of time-based milestones from traditional air traffic flow management to the UAM system to ensure safe traffic volume and optimize air traffic flow. For traffic flow management, the milestone time information is categorized into a total of 13 key milestone time indicators based on the UAM movement status, and the sharing entities providing each time indicator and the flow of milestones are defined. Emphasizing the need for a CDM to balance UAM traffic and capacity, sharing and managing milestone information among stakeholders is expected to improve UAM aircraft departure flow and enhance operational efficiency.

UAM Parallel Corridor Collision Risk Analysis based on Collision Risk Model (충돌 위험 모델을 활용한 UAM 평행 항로 충돌 위험 분석)

  • Youn-sil Kim;Joong-won Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.561-567
    • /
    • 2023
  • In this study, the collision risk of the UAM (Urban Air Mobility) corridor was analyzed using a collision risk model applied to the manned aircraft corridor. According to the K-UAM roadmap and operating concept, UAM is expected to fly on a designated route similar to existing manned aircraft operations and operate on two routes, traveling back and forth between the departure point and the destination point. Among domestic manned aircraft routes, the manned aircraft operation between Gimpo Airport and Jeju Airport is similar to this and takes the form of a parallel route with a lateral separation distance between the two routes. In this study, we analyzed the collision risk of the UAM corridor according to the lateral separation distance using a collision risk model used to analyze the collision risk of manned aircraft parallel routes for a similar type of UAM corridor. Based on this, we finally analyzed how many parallel routes could be installed within the width of the Han River, considering the K-UAM demonstration route.

Requirement Analysis of Efficiency, Reliability, Safety, Noise, Emission, Performance and Certification Necessary for the Application of Urban Air Mobility (UAM) (도심항공 모빌리티(UAM) 적용에 필요한 효율, 신뢰성, 안전성, 소음, 배기가스, 성능 및 인증의 요구도 분석)

  • Yun, Ju-Yeol;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.329-342
    • /
    • 2020
  • In this paper, we analyzed the requirements for the application of UAM, a new concept to solve the traffic congestion in large cities. First, the current domestic and foreign status of research and development related to UAM was investigated and the pros and cons and the time required for each mission radius were analyzed for various configurations of aircraft being commercialized. In addition, in order to analyze the market acceptance of the UAM, the individual's consciousness and reliability requirements were identified and safety requirements were analyzed through accident rate data for each aircraft type. Because it operates in a densely populated urban area, requirement analyses on noise and exhaust, which are environmental factors that can affect the community were performed, and requirements related to aircraft performance, certification standards, and airworthiness standards of FAA and EASA were also analyzed.

A Study on the Separation Minima for Urban Air Mobility in Low-Density Operation Environments (저밀도 운용 환경에서의 도심항공교통 분리 기준에 관한 연구)

  • Hyoseok Chang;Dohyun Kim;Jaewoo Kim;Daniel Kim;Heeduk Cho
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.710-715
    • /
    • 2023
  • Urbanization brings many challenges such as traffic, housing, and environment. To solve these problems, researchers are working on new transportation systems like urban air mobility (UAM). UAM aircraft should fly safely without burdening the existing air traffic system in the early stage of low-density operation. The airspace should also be managed and operated efficiently. Therefore it is important to make urban air traffic predictable by using corridors and collecting data on low-density operations in the early stage. For this purpose various simulations are needed before operation to create scenarios that estimate potential collisions between UAM aircraft and to evaluate the risks of aircraft spacing, loss of separation (LoS), and near mid air collision (NMAC). This paper focuses on identifying the requirements and considerations for setting separation standards for urban air traffic based on the results of studies.

Case Study Building a Vertiport for UAM Commercialization: Based on the Demonstration in Pontoise-Cormeiles, France (UAM 상용화를 위한 버티포트 구축 사례 연구: 프랑스 퐁투와즈 실증사례를 중심으로)

  • Joomin Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • Urban Air Mobility (UAM) is considered the future of transportation, offering solutions to urban challenges and reducing environmental issues through the use of electric power and leveraging the sky as a new transportation corridor. UAM has diverse applications, including passenger and goods transportation, emergency rescue operations, patient transfers, and urban tourism. Furthermore, it is poised to revolutionize the transportation landscape, impacting existing infrastructures such as roads and parking lots, along with autonomous vehicles. The UAM industry is anticipated to exert a significant impact on various sectors, including airframe manufacturing, the development of new materials (e.g., fuel cells and batteries), and even the defense industry, resulting in substantial economic benefits. Consequently, conducting proactive research and setting industry standards for UAM takeoff and landing infrastructure is crucial for securing market leadership. In this regard, the case of Pontoise-Cormeiles, France, stands out as it achieved the world's inaugural successful demonstration of a vertiport before the 2024 Olympics. This achievement has significant implications for our preparations for the commercialization of UAMs. Thus, a detailed review of the French vertiport construction case in this study will serve as a foundation for guiding the planning and operation of UAMs in South Korea, particularly in anticipation of upcoming demonstration tests.