• Title/Summary/Keyword: U0126

Search Result 76, Processing Time 0.025 seconds

Blockade of ERK Phosphorylation in the Nucleus Accumbens Inhibits the Expression of Cocaine-induced Behavioral Sensitization in Rats

  • Kim, Seung-Woo;Shin, Joong-Keun;Yoon, Hyung-Shin;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.389-395
    • /
    • 2011
  • Repeated administration of psychostimulants such as cocaine leads to the development of behavioral sensitization. Extracellular signal-Regulated Kinase (ERK), an enzyme important for long-term neuronal plasticity, has been implicated in such effects of these drugs. Although the nucleus accumbens (NAcc) is the site mediating the expression of behavioral sensitization by drugs of abuse, the precise role of ERK activation in this site has not been determined. In this study we demonstrate that blockade of ERK phosphorylation in the NAcc by a single bilateral microinjections of PD98059 (0.5 or $2.0{\mu}g/side$), or U0126 (0.1 or $1.0{\mu}g/side$), into this site dose-dependently inhibited the expression of cocaine-induced behavioral sensitization when measured at day 7 following 6 consecutive daily cocaine injections (15 mg/kg, i.p.). Acute microinjection of either vehicle or PD98059 alone produced no different locomotor activity compared to saline control. Further, microinjection of PD98059 ($2.0{\mu}g/side$) in the NAcc specifically lowered cocaine-induced increase of ERK phosphorylation levels in this site, while unaffecting p-38 protein levels. These results indicate that ERK activation in the NAcc is necessary for the expression of cocaine-induced behavioral sensitization, and further suggest that repeated cocaine evokes neuronal plasticity involving ERK pathway in this site leading to long-lasting behavioral changes.

Aquaporin 8 Involvement in Human Cervical Cancer SiHa Migration via the EGFR-Erk1/2 Pathway

  • Shi, Yong-Hua;Tuokan, Talaf;Lin, Chen;Chang, Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6391-6395
    • /
    • 2014
  • Overexpression of aquaporins (AQPs) has been reported in several human cancers. Epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinases 1/2 (Erk1/2) are associated with tumorigenesis and cancer progression and may upregulate AQP expression. In this study, we demonstrated that EGF (epidermal growth factor) induces SiHa cells migration and AQP8 expression. Wound healing results showed that cell migration was increased by 2.79-1.50-fold at 24h and 48h after EGF treatment. AQP8 expression was significantly increased (3.33-fold) at 48h after EGF treatment in SiHa cells. An EGFR kinase inhibitor, PD153035, blocked EGF-induced AQP8 expression and cell migration and AQP8 expression was decreased from 1.59-fold (EGF-treated) to 0.43-fold (PD153035-treated) in SiHa. Furthermore, the MEK (MAPK (mitogen-activated protein kinase)/Erk (extracellular signal regulated kinase)/Erk inhibitor U0126 also inhibited EGF-induced AQP8 expression and cell migration. AQP8 expression was decreased from 1.21-fold (EGF-treated) to 0.43-fold (U0126-treated). Immunofluorescence microscopy further confirmed the results. Collectively, our findings show that EGF induces AQP8 expression and cell migration in human cervical cancer SiHa cells via the EGFR/Erk1/2 signal transduction pathway.

Modulation of Human Cardiac Progenitors via Hypoxia-ERK Circuit Improves their Functional Bioactivities

  • Jung, Seok Yun;Choi, Sung Hyun;Yoo, So Young;Baek, Sang Hong;Kwon, Sang Mo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.196-203
    • /
    • 2013
  • Recent accumulating studies have reported that hypoxic preconditioning during ex vivo expansion enhanced the self-renewal or differentiation of various stem cells and provide an important strategy for the adequate modulation of oxygen in culture conditions, which might increase the functional bioactivity of these cells for cardiac regeneration. In this study, we proposed a novel priming protocol to increase the functional bioactivity of cardiac progenitor cells (CPCs) for the treatment of cardiac regeneration. Firstly, patient-derived c-$kit^+$ CPCs isolated from the atrium of human hearts by enzymatic digestion and secondly, pivotal target molecules identified their differentiation into specific cell lineages. We observed that hCPCs, in response to hypoxia, strongly activated ERK phosphorylation in ex vivo culture conditioning. Interestingly, pre-treatment with an ERK inhibitor, U0126, significantly enhanced cellular proliferation and tubular formation capacities of CPCs. Furthermore, we observed that hCPCs efficiently maintained the expression of the c-kit, a typical stem cell marker of CPCs, under both hypoxic conditioning and ERK inhibition. We also show that hCPCs, after preconditioning of both hypoxic and ERK inhibition, are capable of differentiating into smooth muscle cells (SMCs) and cardiomyocytes (CMs), but not endothelial cells (ECs), as demonstrated by the strong expression of ${\alpha}$-SMA, Nkx2.5, and cTnT, respectively. From our results, we conclude that the functional bioactivity of patient-derived hCPCs and their ability to differentiate into SMCs and CMs can be efficiently increased under specifically defined culture conditions such as short-term hypoxic preconditioning and ERK inhibition.

Biological Activities of Kombucha by Stater Culture Fermentation with Gluconacetobacter spp. (Gluconacetobacter spp. 스타터로 발효한 콤부차의 생리활성)

  • Ko, Hye-Myoung;Shin, Seung-Shick;Park, Sung-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.896-902
    • /
    • 2017
  • In this study, we investigated citrus Kombucha (CK) produced by three different bacteria strains (Gluconacetobacter xylinus, Gluconacetobacter medellinensis, and Gluconobacter oxydans; named as CK-MOX) identified from traditional Kombucha. During fermentation, the pH level of CK-MOX was gradually reduced, and total acidity slightly increased. Antioxidant activity, measured by DPPH, ABTS, and oxygen radical absorbance capacity assays, markedly increased after fermentation. Moreover, fermented CK-MOX (Day15) exhibited anti-proliferative and anti-migratory activities against EJ human bladder carcinoma cells. Western immunoblot assays showed that treatment with CK-MOX significantly up-regulated phospho-extracellular signaling kinase (ERK) levels. To distinguish whether or not up-regulation of phospho-ERK is the cause or effect, we investigated the viability of EJ cells in the presence of U0126, a mitogen activated protein kinase/ERK kinase 1/2 inhibitor. Pre-treatment with U0126 rescued cells from CK-MOX-induced cell death, which indicates phospho-ERK may be a key regulator in the mechanism of CK-MOX-induced apoptosis of EJ bladder cancer cells. In conclusion, CK-MOX, fermented by a defined composition of bacterial starters, shows antioxidant capacity and anti-cancer activity against EJ bladder cancer cells.

Molecular Mechanisms through Which Peptidoglycan Induces IL-1β Expression in Monocytic Cells (펩티도글라이칸에 의한 인터루킨-1 베타 발현 기전 연구)

  • Seo, Hyun-Cheol;Kim, Sun-Mi;Lee, Sae-A;Rhim, Byung-Yong;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1637-1643
    • /
    • 2012
  • This study investigated the effects of PG on IL-$1{\beta}$ expression and determined cellular factors involved in PG-mediated IL-$1{\beta}$ up-regulation in mononuclear cells in order to understand the molecular mechanisms underlying inflammatory responses associated with bacterial pathogen-associated molecular patterns in the diseased artery. Exposure of human monocytic leukemia THP-1 cells to PG resulted in enhanced secretion of IL-$1{\beta}$ and also profound induction of the IL-$1{\beta}$ gene transcript. These effects were abrogated by OxPAPC, an inhibitor of TLR-2/4. Pharmacological inhibitors such as U0126, SP6001250, Akti IV, rapamycin, and DPI also significantly attenuated PG-mediated IL-$1{\beta}$ up-regulation. However, polymyxin B did not influence the IL-$1{\beta}$ expression. This study indicates that PG contributes to vascular inflammation in atherosclerotic plaques by up-regulating expression of IL-$1{\beta}$ via TLR-2, Akt, mTOR, MAPKs, and ROS.

Inhibitory effect of ginsenglactone A from Panax ginseng on the tube formation of human umbilical vein endothelial cells and migration of human ovarian cancer cells

  • Dahae Lee;Ranhee Kim;So-Ri Son;Ji-Young Kim;Sungyoul Choi;Ki Sung Kang;Dae Sik Jang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.246-254
    • /
    • 2023
  • Background: Here, we aimed to assess the inhibitory effect of a new compound from Panax ginseng on the migration of human ovarian cancer cells and tube formation of human umbilical vein endothelial cells (HUVECs). Methods: A new compound, ginsenglactone A (1), was isolated from ginseng roots, together with seven known compounds (2-8). Spectroscopic data were used to elucidate the chemical structure of 1. The tubular structure formation in HUVECs was assessed by Mayer's hematoxylin staining. The migration of A2780 cells was evaluated using the scratch wound healing assay. Results: HUVECs treated with 1 had the statistically significant decrease in tubular structure formation compared to the HUVECs treated with compounds 2-8. This effect was enhanced by co-treatment with inhibitors for phosphatidylinositol 3-kinase (PI3K) (LY294002) and extracellular signal-regulated kinase (ERK) (U0126). Treatment with 1 decreased the expression of phosphorylation of ERK, PI3K, vascular endothelial growth factor receptor2 (VEGFR2), Akt, and mammalian target of rapamycin (mTOR). In addition, the ability of A2780 cells to cover the scratched area were also decreased. This effect was enhanced by co-treatment with U0126. Lastly, treatment with 1 decreased the phosphorylation of ERK, matrix metalloproteinase-9 (MMP-9), and MMP-2. Conclusion: These results suggest that ginsenglactone A is a potential inhibitor of HUVEC tubular structure formation and A2780 cellular migration, which may be helpful for understanding its anticancer mechanism.

The Interaction between Epidermal Growth Factor (EGF) and Follicular Stimulating Hormone (FSH) on Nuclear Maturation of Mouse Oocytes by Using Their Inhibitor

  • Cha, Soo-Kyung;Kim, Tae-Hyung;Eum, Jin-Hee;Park, Kang-Hee;Park, Eun-A;Kim, Seung-Bum;Chung, Mi-Kyung;Lee, Dong-Ryul;Ko, Jung-Jae
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.113-113
    • /
    • 2002
  • The stimulatory effect of EGF and FSH on oocyte maturation have been reported in various mammalian species. And some reports presented FSH enhanced the effect of EGF on oocyte maturation. But, the interaction between EGF and FSH on nuclear maturation of mammalian oocytes is not fully understood. We observed the effect of EGF and FSH on nuclear maturation during in vitro maturation of mouse oocytes. Also, we examined the interaction between EGF and FSH on nuclear maturation of mouse oocytes using the EGFR inhibitor or FSH inhibitor. Germinal vesicle (GV) stage oocytes were obtained from 3-4weeks PMSG primed BCFI hybrid mice and cultured in TCM-199 medium with 0.4%PVP supplemented with/without EGF (1ng/ml), FSH (1ug/ml), EGFR specific tyrosine kinase inhibitors: Tyrphostin AG 1478 (500nM), MAP kinase kinase inhibitor : U0126 (20uM) or PD 98059 (100uM) for 14-l5hr. Rapid staining method were used for the assessment of nuclear maturation. Nuclear maturation rates of EGF indjor FSH-treated group were significantly higher than those of control group. Treatment of EGFR inhibitor significantly block the nuclear maturation of GV oocyte in EGF-treated group, but it did not block those of GV oocyte in FSH-treated or FSH and EGF-treated group. Treatment of FSH inhibitor(U0126, PD98059) significantly block the nuclear maturation of EGF-treated group, FSH-treated and FSH and EGF-treated group. These results show that EGF has a stimulatory effect as well as different action pathway with FSH on in-vitro maturation of mouse oocyte in vitro. Therefore, further studies will be needed to find the signaling pathway of EGF associated with nuclear maturation.

  • PDF

Regulatory Role of CD29 $({\beta}1-integrins)$ in Monocytic Cell Functions (단핵구 기능 수행에서의 $CD29({\beta}1-integrins)$ 조절 역할)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.48-55
    • /
    • 2008
  • CD29 $({\beta}1-integrins)$ is one of major adhesion molecules involved in regulating cell adhesion, migration and morphological changes. In this study, we investigated the regulatory role of CD29 in monocytic functions using monocytic cell line U937 cells. CD29 was found to be one of highly expressed membrane proteins in U937 cells, according to flow cytometric analysis. The activation of CD29 by agonistic antibody MEM101A and extracellular matrix protein (ECM) fibronectin strongly induced cell-cell and cell-fibronectin adhesions. However, blocking antibodies to CD98 and CD147 showed different inhibitory features in these two adhesion events. Furthermore, U0126, an ERK inhibitor, only blocked cell-cell adhesion but not cell-fibronectin adhesion, indicating that cell-cell or cell-fibronectin adhesion events may be regulated by different molecular mechanisms. Meanwhile, CD29 activation also enhanced ROS generation but not phagocytic ability, and similarly radical scavenger N-acetyl-L-cysteine strongly blocked CD29-mediated cell-cell adhesion, implying that ROS may play a critical role in up-regulating cell-cell adhesion. Therefore, our data suggest that the activation of CD29 may be critically involved in regulating monocytic cell-mediated cell-cell adhesion and ROS generation.

Modulatory Effect of Diethylstilbestrol on CD29-Mediated Cell-cell Adhesion in Monocytic U937 Cells (Diethylstilbestrol의 단핵구의 세포간 유착과정 조절효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.111-116
    • /
    • 2008
  • Diethylstilbestrol (DESB) is a synthetic estrogen not only that routinely prescribed, but also that known to be a teratogen. In this study, we found a novel pharmacological feature that DESB is able to positively modulate CD29 $({\beta}1-integrin)$ function. Thus, DESB up-regulated homotypic cell-cell adhesion of monocytic U937 cells mediated by CD29. However, DESB did not increase the surface level of CD29 and its binding activity to ligand (fibronectin), according to flow cytometric analysis and cell-fibronectin adhesion assay. Instead, the DESB-mediated up-regulation of cell-cell adhesion was blocked by several signaling enzyme inhibitors. Treatment of U0126 [an extracellular signal-regulated kinase (ERK) inhibitor], SB20358 (a p38 inhibitor) or Rp-8-pCPT-cGMP (a protein kinase G inhibitor) clearly inhibited DESB-mediated up-regulation of cell-cell adhesion induced by CD29. However, estrogen receptor antagonist ICI 182,780 failed to abrogate DESB effect. Therefore, our data suggest that DESB may up-regulate CD29-mediated cell-cell adhesion via modulating intracellular signaling enzymes such as ERK, PKG, and p38, independent of estrogen receptor function.

Essential Role for c-jun N-terminal Kinase on tPA-induced Matrix Metalloproteinase-9 Regulation in Rat Astrocytes

  • Lee, Sun-Ryung
    • Animal cells and systems
    • /
    • v.10 no.2
    • /
    • pp.79-83
    • /
    • 2006
  • Tissue plasminogen activator (tPA) is used to lyse clots and reperfuse brain in ischemic stroke. However, sideeffects of intracerebral hemorrhage (ICH) and edema limit their clinical application. In part, these phenomena has been linked with elevations in matrix metalloproteinase-9 (MMP-9) in neurovascular unit. However little is known about their regulatory signaling pathways in brain cells. Here, I examine the role of MAP kinase pathways in tPA-induced MMP-9 regulation in rat cortical astrocytes. tPA $(1-10\;{\mu}g/ml)$ induced dose-dependent elevations in MMP-9 and MMP-2 in conditioned media. Although tPA increased phosphorylation in two MAP kinases (ERK, JNK), only inhibition of the JNK pathway by the JNK inhibitor SP600126 significantly reduced MMP-9 upregulation. Neither ERK inhibition with U0126 nor p38 inhibition with SB203580 had any significant effects. Taken together, these results suggest that c-jun N-terminal kinase (JNK) plays an essential role for tPA-induced MMP-9 upregulation.