Browse > Article
http://dx.doi.org/10.4062/biomolther.2013.019

Modulation of Human Cardiac Progenitors via Hypoxia-ERK Circuit Improves their Functional Bioactivities  

Jung, Seok Yun (Laboratory of Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University)
Choi, Sung Hyun (Laboratory of Cardiovascular Disease, Division of Cardiology, School of Medicine, The Catholic University of Korea)
Yoo, So Young (Laboratory of Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University)
Baek, Sang Hong (Laboratory of Cardiovascular Disease, Division of Cardiology, School of Medicine, The Catholic University of Korea)
Kwon, Sang Mo (Laboratory of Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University)
Publication Information
Biomolecules & Therapeutics / v.21, no.3, 2013 , pp. 196-203 More about this Journal
Abstract
Recent accumulating studies have reported that hypoxic preconditioning during ex vivo expansion enhanced the self-renewal or differentiation of various stem cells and provide an important strategy for the adequate modulation of oxygen in culture conditions, which might increase the functional bioactivity of these cells for cardiac regeneration. In this study, we proposed a novel priming protocol to increase the functional bioactivity of cardiac progenitor cells (CPCs) for the treatment of cardiac regeneration. Firstly, patient-derived c-$kit^+$ CPCs isolated from the atrium of human hearts by enzymatic digestion and secondly, pivotal target molecules identified their differentiation into specific cell lineages. We observed that hCPCs, in response to hypoxia, strongly activated ERK phosphorylation in ex vivo culture conditioning. Interestingly, pre-treatment with an ERK inhibitor, U0126, significantly enhanced cellular proliferation and tubular formation capacities of CPCs. Furthermore, we observed that hCPCs efficiently maintained the expression of the c-kit, a typical stem cell marker of CPCs, under both hypoxic conditioning and ERK inhibition. We also show that hCPCs, after preconditioning of both hypoxic and ERK inhibition, are capable of differentiating into smooth muscle cells (SMCs) and cardiomyocytes (CMs), but not endothelial cells (ECs), as demonstrated by the strong expression of ${\alpha}$-SMA, Nkx2.5, and cTnT, respectively. From our results, we conclude that the functional bioactivity of patient-derived hCPCs and their ability to differentiate into SMCs and CMs can be efficiently increased under specifically defined culture conditions such as short-term hypoxic preconditioning and ERK inhibition.
Keywords
Human cardiac progenitor; Hypoxia preconditioning; U0126;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Short, M., Nemenoff, R. A., Zawada, W. M., Stenmark, K. R. and Das, M. (2004) Hypoxia induces differentiation of pulmonary artery adventitial fi broblasts into myofi broblasts. Am. J. Physiol. Cell Physiol. 286, C416-425.   DOI   ScienceOn
2 Soonpaa, M. H., Koh, G. Y., Klug, M. G. and Field, L. J. (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264, 98-101.   DOI
3 Sturzu, A. C. and Wu, S. M. (2011) Developmental and regenerative biology of multipotent cardiovascular progenitor cells. Circ. Res. 108, 353-364.   DOI   ScienceOn
4 Tang, J., Wang, J., Kong, X., Yang, J., Guo, L., Zheng, F., Zhang, L., Huang, Y. and Wan, Y. (2009) Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp. Cell Res. 315, 3521-3531.   DOI   ScienceOn
5 Tang, J. M., Wang, J. N., Zhang, L., Zheng, F., Yang, J. Y., Kong, X., Guo, L. Y., Chen, L., Huang, Y. Z., Wan, Y. and Chen, S. Y. (2011) VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc. Res. 91, 402-411.   DOI   ScienceOn
6 Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M.C., Hutcheson, K. A., Glower, D. D. and Kraus, W. E. (1998) Regeneratingfunctional myocardium: improved performance afterskeletal myoblast transplantation. Nat. Med. 4, 929-933.   DOI   ScienceOn
7 Tuncay, O. C., Ho, D. and Barker, M. K. (1994) Oxygen tension regulates osteoblast function. Am. J. Orthod. Dentofacial. Orthop. 105, 457-463.   DOI   ScienceOn
8 Urbich, C., Heeschen, C., Aicher, A., Sasaki, K., Bruhl, T., Farhadi, M. R., Vajkoczy, P., Hofmann, W. K., Peters, C., Pennacchio, L. A., Abolmaali, N. D., Chavakis, E., Reinheckel, T., Zeiher, A. M. and Dimmeler, S. (2005) Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat. Med. 11, 206-213.   DOI   ScienceOn
9 Volkmer, E., Kallukalam, B. C., Maertz, J., Otto, S., Drosse, I., Polzer, H., Bocker, W., Stengele, M., Docheva, D., Mutschler, W. and Schieker, M. (2010) Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation. Tissue Eng. Part A 16, 153-164.   DOI
10 Yan, F., Yao, Y., Chen, L., Li, Y., Sheng, Z. and Ma, G. (2012) Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1alpha-CXCR4 axis. PLoS One 7, e37948.   DOI
11 Lee, W. C., Choi, C. H., Cha, S. H., Oh, H. L. and Kim, Y. K. (2005) Role of ERK in hydrogen peroxide-induced cell death of human glioma cells. Neurochem. Res. 30, 263-270.   DOI   ScienceOn
12 Lennon, D. P., Edmison, J. M. and Caplan, A. I. (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J. Cell. Physiol. 187, 345-355.   DOI   ScienceOn
13 Li, R. K., Jia, Z. Q., Weisel, R. D., Merante, F. and Mickle, D. A. (1999) Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J. Mol. Cell. Cardiol. 31, 513-522.   DOI   ScienceOn
14 McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., Lehmann, B., Terrian, D. M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J., Evangelisti, C., Martelli, A. M. and Franklin, R. A. (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773, 1263-1284.   DOI   ScienceOn
15 Li, T. S., Cheng, K., Malliaras, K., Matsushita, N., Sun, B., Marban, L., Zhang, Y. and Marban, E. (2011) Expansion of human cardiac stem cells in physiological oxygen improves cell production effi ciency and potency for myocardial repair. Cardiovasc. Res. 89, 157-165.   DOI   ScienceOn
16 Linke, A., Muller, P., Nurzynska, D., Casarsa, C., Torella, D., Nascimbene, A., Castaldo, C., Cascapera, S., Bohm, M., Quaini, F., Urbanek, K., Leri, A., Hintze, T. H., Kajstura, J. and Anversa, P. (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl. Acad. Sci. U.S.A 102, 8966-8971.   DOI   ScienceOn
17 Markway, B. D., Tan, G. K., Brooke, G., Hudson, J. E., Cooper-White, J. J. and Doran, M. R. (2010) Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant. 19, 29-42.   DOI   ScienceOn
18 Murry, C. E., Wiseman, R. W., Schwartz, S. M. and Hauschka, S. D. (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98, 2512-2523.   DOI
19 Ong, L. L., Li, W., Oldigs, J. K., Kaminski, A., Gerstmayer, B., Piechaczek, C., Wagner, W., Li, R. K., Ma, N. and Steinhoff, G. (2010) Hypoxic/normoxic preconditioning increases endothelial differentiation potential of human bone marrow CD133+ cells. Tissue Eng. Part C Methods 16, 1069-1081.   DOI   ScienceOn
20 Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., Nadal-Ginard, B., Bodine, D. M., Leri, A. and Anversa, P. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. U.S.A. 98, 10344-10349.   DOI   ScienceOn
21 Goichberg, P., Bai, Y., D'Amario, D., Ferreira-Martins, J., Fiorini, C., Zheng, H., Signore, S., del Monte, F., Ottolenghi, S., D'Alessandro, D. A., Michler, R. E., Hosoda, T., Anversa, P., Kajstura, J., Rota, M. and Leri, A. (2011) The ephrin A1-EphA2 system promotes cardiac stem cell migration after infarction. Circ. Res. 108, 1071-1083.   DOI   ScienceOn
22 Qian, Q., Qian, H., Zhang, X., Zhu, W., Yan, Y., Ye, S., Peng, X., Li, W., Xu, Z., Sun, L. and Xu, W. (2012) 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev. 21, 67-75.   DOI   ScienceOn
23 Shaul, Y. D. and Seger, R. (2007) The MEK/ERK cascade: from signaling specifi city to diverse functions. Biochim. Biophys. Acta 1773, 1213-1226.   DOI   ScienceOn
24 Galli, D., Innocenzi, A., Staszewsky, L., Zanetta, L., Sampaolesi, M., Bai, A., Martinoli, E., Carlo, E., Balconi, G., Fiordaliso, F., Chimenti, S., Cusella, G., Dejana, E., Cossu, G. and Latini, R. (2005) Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fi broblasts, and endothelial cells. Arterioscler. Thromb. Vasc. Biol. 25, 692-697.   DOI   ScienceOn
25 Horie, N., So, K., Moriya, T., Kitagawa, N., Tsutsumi, K., Nagata, I. and Shinohara, K. (2008) Effects of oxygen concentration on the proliferation and differentiation of mouse neural stem cells in vitro. Cell. Mol. Neurobiol. 28, 833-845.   DOI
26 Hung, S. P., Ho, J. H., Shih, Y. R., Lo, T. and Lee, O. K. (2012) Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J. Orthop. Res. 30, 260-266.   DOI   ScienceOn
27 Iwasaki, H., Kawamoto, A., Ishikawa, M., Oyamada, A., Nakamori, S., Nishimura, H., Sadamoto, K., Horii, M., Matsumoto, T., Murasawa, S., Shibata, T., Suehiro, S. and Asahara, T. (2006) Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113, 1311-1325.   DOI   ScienceOn
28 Kawamoto, A., Tkebuchava, T., Yamaguchi, J., Nishimura, H., Yoon, Y. S., Milliken, C., Uchida, S., Masuo, O., Iwaguro, H., Ma, H., Hanley, A., Silver, M., Kearney, M., Losordo, D. W., Isner, J. M. and Asahara, T. (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107, 461-468.   DOI   ScienceOn
29 Jimenez, L. A., Zanella, C., Fung, H., Janssen, Y. M., Vacek, P., Charland, C., Goldberg, J. and Mossman, B. T. (1997) Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. Am. J. Physiol. 273, L1029-1035.
30 Kawamoto, A., Iwasaki, H., Kusano, K., Murayama, T., Oyamada, A., Silver, M., Hulbert, C., Gavin, M., Hanley, A., Ma, H., Kearney, M., Zak, V., Asahara, T. and Losordo, D. W. (2006) CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114, 2163-2169.   DOI   ScienceOn
31 Kofoed, H., Sjontoft, E., Siemssen, S. O. and Olesen, H. P. (1985) Bone marrow circulation after osteotomy. Blood fl ow, pO2, pCO2, and pressure studied in dogs. Acta Orthop. Scand. 56, 400-403.   DOI
32 Koh, G. Y., Soonpaa, M. H., Klug, M. G., Pride, H. P., Cooper, B. J., Zipes, D. P. and Field, L. J. (1995) Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J. Clin. Invest. 96, 2034-2042.   DOI   ScienceOn
33 Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A., Yasuzawa-Amano, S., Trofi mova, I., Siggins, R. W., Lecapitaine, N., Cascapera, S., Beltrami, A. P., D'Alessandro, D. A., Zias, E., Quaini, F., Urbanek, K., Michler, R. E., Bolli, R., Kajstura, J., Leri, A. and Anversa, P. (2007) Human cardiac stem cells. Proc. Natl. Acad. Sci. U.S.A. 104, 14068-14073.   DOI   ScienceOn
34 Brighton, C. T., Lorich, D. G., Kupcha, R., Reilly, T. M., Jones, A. R. and Woodbury, R. A. 2nd (1992) The pericyte as a possible osteoblast progenitor cell. Clin. Orthop. Relat. Res. 275, 287-299.
35 Conde de la Rosa, L., Schoemaker, M. H., Vrenken, T. E., Buist-Homan, M., Havinga, R., Jansen, P. L. and Moshage, H. (2006) Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J. Hepatol. 44, 918-929.   DOI   ScienceOn
36 Cao, F., Lin, S., Xie, X., Ray, P., Patel, M., Zhang, X., Drukker, M., Dylla, S. J., Connolly, A. J., Chen, X., Weissman, I. L., Gambhir, S. S. and Wu, J. C. (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113, 1005-1014.   DOI   ScienceOn
37 Cesselli, D., Beltrami, A. P., D'Aurizio, F., Marcon, P., Bergamin, N., Toffoletto, B., Pandolfi , M., Puppato, E., Marino, L., Signore, S., Livi, U., Verardo, R., Piazza, S., Marchionni, L., Fiorini, C., Schneider, C., Hosoda, T., Rota, M., Kajstura, J., Anversa, P., Beltrami, C. A. and Leri, A. (2011) Effects of age and heart failure on human cardiac stem cell function. Am. J. Pathol. 179, 349-366.   DOI   ScienceOn
38 Chen, H. L., Pistollato, F., Hoeppner, D. J., Ni, H. T., McKay, R. D. and Panchision, D. M. (2007) Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 25, 2291-2301.   DOI   ScienceOn
39 D'Amario, D., Cabral-Da-Silva, M. C., Zheng, H., Fiorini, C., Goichberg, P., Steadman, E., Ferreira-Martins, J., Sanada, F., Piccoli, M., Cappetta, D., D'Alessandro, D. A., Michler, R. E., Hosoda, T., Anastasia, L., Rota, M., Leri, A., Anversa, P. and Kajstura, J. (2011) Insulin-like growth factor-1 receptor identifi es a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ. Res. 108, 1467-1481.   DOI   ScienceOn
40 D'Ippolito, G., Diabira, S., Howard, G. A., Roos, B. A. and Schiller, P. C. (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39, 513-522.   DOI   ScienceOn
41 Ezashi, T., Das, P. and Roberts, R. M. (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl. Acad. Sci. U. S.A. 102, 4783-4788.   DOI   ScienceOn