• Title/Summary/Keyword: U-phase

Search Result 1,019, Processing Time 0.036 seconds

High Temperature Oxidation Behavior of Nd-doped $UO_2$ (네오듐 고용 이산화우라늄의 고온 산화거동)

  • Lee, Jae-Won;Kang, Sang-Jun;Kim, Young-Hwan;Cho, Kwang-Hun;Park, Guen-IL;Lee, Jung-Won
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.227-230
    • /
    • 2013
  • The phase change of $(U_{1-x}Nd_x)_3O_8$ powder produced by oxidation of Nd-doped $UO_2$ pellet at $500^{\circ}C$ was investigated by high temperature oxidation heat treatment at $900{\sim}1500^{\circ}C$ under an air atmosphere. The XRD analysis results showed that the formation of $(U_{1-y}Nd_y)O_{2+z}$ phase and $U_3O_8$ phase from metastable $(U,Nd)_3O_8$ phase initiated at a temperature of $1000^{\circ}C$. The relative integrated intensity of $(U_{1-y}Nd_y)O_{2+z}$ phase to $U_3O_8$ phase increased with increasing of the oxidation temperature from 1100 to $1500^{\circ}C$. And also, it was found from the SEM observation that the particle size of $(U_{1-y}Nd_y)O_{2+z}$ phase increased with increasing of the oxidation temperature. However, electrone probe X-ray microanalyzer (EPMA) analysis results showed that Nd contents in $(U_{1-y}Nd_y)O_{2+z}$ phase decreased with increasing of the oxidation temperature. This behavior on the ground of XRD, SEM, and EPMA analysis data could be interpreted in terms of the transportation of U ions from $U_3O_8$ phase into $(U_{1-y}Nd_y)O_{2+z}$ phase through the interface of two phases during high temperature oxidation.

The High Temperature Oxidation Behavior of l0wt%$Gd_2 O_3$- Doped $UO_2$

  • J.H. Yang;K.W. Kang;Kim, K.S.;K.W. Song;Kim, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.307-314
    • /
    • 2001
  • The changes of weight gain, structure, morphology and uranium oxidation states in l0wt% G $d_2$ $O_3$-doped U $O_2$ during the oxidation below 475$^{\circ}C$ and heat treatment at 130$0^{\circ}C$ in air were investigated using TGA, XRD, SEM, EPMA and XPS. The room temperature ( $U_{0.86}$G $d_{0.14}$) $O_2$Cubic Phase Converted to highly distorted ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type sing1e Phase by oxidation at 475 $^{\circ}C$ in air. This oxidized phase was reduced by annealing at 130$0^{\circ}C$ in air. The room temperature XRD pattern of the 130$0^{\circ}C$ annealed powder revealed that ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type single phase was separated into Gd-depleted $U_3$ $O_{8}$ and Gd-enriched ( $U_{0.7}$G $d_{0.3}$) $O_2$$_{+x}$ type cubic phase. The reduction and phase separation by the high temperature annealing of kinetically metastable and highly deformed ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type phase are interpreted in terms of cation size difference between G $d^3$$^{+}$ and U according to the oxidation state of U.U.U.U.U.te of U.U.U.U.U.

  • PDF

Characteristic Analysis of A Novel Two-Phase Permanent Magnet Synchronous Motor with Asymmetric U-core Stator Structure (비대칭 U - 코어 고정자 구조를 가진 새로운 2상 영구자석 동기전동기의 특성해석)

  • Zhao, Fei;Lipo, Thomas Anthony;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1089-1090
    • /
    • 2011
  • This paper presents a novel two-phase two-pole permanent magnet synchronous motor (PMSM) with asymmetric U-core stator structure. The construction and parameters of the novel two-phase U-core PMSM are compared with a conventional U-core single-phase PMSM (SPMSM). Then transient characteristics such as torque, back-emf, and power loss of the both PMSMs are analyzed by using 3-D Finite Element Method (FEM). Under the same condition of rated input current, synchronous speed, similar dimensions and volume, FE results show that the two-phase PMSM with U-core stator has significantly less torque ripple than single-phase U-core PMSM, with similar power loss and efficiency.

  • PDF

Phase Separation of Gd-doped UO2 and Measurement of Gd Content Dissolved in Uranium Oxide (Gd-doped UO2의 상분리 및 UO2에 고용된 Gd 함량 측정)

  • 김건식;양재호;송근우;김길무
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.916-920
    • /
    • 2003
  • The change of structure and morphology in ( $U_{0.913}$G $d_{0.087}$) $O_2$ during oxidation at 475$^{\circ}C$ and heat treatment at 130$0^{\circ}C$ in air were investigated using XRD, SEM, and EPMA. The ( $U_{0.913}$G $d_{0.087}$) $O_2$ cubic phase converted to ( $U_{0.913}$G $d_{0.087}$)$_3$ $O_{8}$ orthorhombic phase by oxidation at 475$^{\circ}C$ in air. The XRD and EPMA result of the 130$0^{\circ}C$ heat treated powder revealed that ( $U_{0.913}$G $d_{0.087}$)$_3$ $O_{8}$ orthorhombic phase was separated into $U_3$ $O_{8}$ and ( $U_{0.67}$G $d_{0.33}$) $O_{2+}$x/ cubic phase. The weight variations of (U,Gd) $O_2$ with various Gd contents were measured using TGA at the same heat treated condition. The weight variation during the heat treatment of Gd dissolve (U,Gd) $O_2$ in air can be expressed in terms of phase reaction equations related with oxidation and phase separation. Based on these phase reaction, a initial content of Gd dissolved in (U,Gd) $O_2$ can be exactly calculated by measuring the weight change during the heat treatment.

Phase Stability Studies of Unirradiated Al-U-10wt.%Mo Fuel at Elevated Temperature

  • Kim, Ki-Hwan;Jang, Se-Jung;Hyun suk Ahn;Park, Jong-Man;Kim, Chang-Kyu;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.273-278
    • /
    • 1998
  • The phase stability of atomized U-10wt. %Mo powder and the thermal compatibility of dispersed fuel meats at 40$0^{\circ}C$ and 50$0^{\circ}C$ have been characterized. Atomized U-10Mo powder has a good \ulcorner-U phase stability, and excellent thermal compatibility with aluminum matrix in a dispersion fuel. It is thought that the good phase stability is related to th large supersaturation of Mo atoms in the atomized particles. The reasons for the excellent thermal compatibility have been considered to be as follows. Before thermal decomposition of ${\gamma}$-U in particle, supersaturated Mo atoms at ${\gamma}$-U grain boundaries inhibit the diffusion of Al atoms. After thermal decomposition of ${\gamma}$-U into ${\gamma}$-U and U$_2$Mo, the intermetallic compound of U$_2$Mo seems to retard the penetration of Al atoms. The penetration mechanisms of aluminum atoms in the atomized particles are assumed be classified as (a) diffusion through the reacted layer between fuel particles and Al matrix leaving a kernel-like unreacted island and (b) diffusion along grain boundaries showing several unreacted islands and more reacted regions.

  • PDF

Analysis of a Two-Phases System of Mass Transfer and Electro-Reduction of Uranium(VI) in Nitric Acid-Hydrazine Media (질산-하이드라이진 매질에서 우라늄(VI)의 물질전달과 전기적 환원을 갖는 이 상계의 해석)

  • Kim, K.W.;Yoo, J.H.;Park, H.S.;Kim, J.D.;Aoyagi, H.;Yoshida, Z.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.216-225
    • /
    • 1995
  • Simulation for a dynamic analysis of the electrolytic preparation of U(IV) in two-phases system, which consisted of mass transfer of U(VI) from TBP phase into HNO$_3$ solution and electrolytic re-duction of U(VI) to U(IV) at a cathode in aqueous phase, was carried out in order to establish the most suitable operating condition and best electrode area as basic design data for the system. It was found that maintaining an appropriate mass transfer rate was more significant rather than enlarging the surface area of the cathode for more effective production yield of U(IV). The electrode area and the operation time affected deeply the production composition of U(IV) in the resulting aqueous phase. And optimal electrode areas ore evaluated to meet production criteria of U(IV) of resulting solution in several system conditions. Though about 0.37M HNO$_3$ was preferable to prepare the solution of U(IV), nitric acid concentration should be higher than 0.5M to prevent a hydrolysis of U(IV) in the aqueous phase.

  • PDF

Investigation on reverse flow characteristics in U-tubes under two-phase natural circulation

  • Chu, Xi;Li, Mingrui;Chen, Wenzhen;Hao, Jianli
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.889-896
    • /
    • 2020
  • The vertically inverted U-tube steam generator (UTSG) is widely used in the pressurized water reactor (PWR). The reverse flow behavior generally exists in some U-tubes of a steam generator (SG) under both single- and two-phase natural circulations (NCs). The behavior increases the flow resistance in the primary loop and reduces the heat transfer in the SG. As a consequence, the NC ability as well as the inherent safety of nuclear reactors is faced with severe challenges. The theoretical models for calculating single- and two-phase flow pressure drops in U-tubes are developed and validated in this paper. The two-phase reverse flow characteristics in two types of SGs are investigated base on the theoretical models, and the effects of the U-tube height, bending radius, inlet steam quality and primary side pressure on the behavior are analyzed. The conclusions may provide some promising references for SG optimization to reduce the disadvantageous behavior. It is also of significance to improve the NC ability and ensure the PWR safety during some accidents.

Crystal Structure Analysis of Uranium Oxides (산화우라늄의 결정구조 분석)

  • 김정석;최용남;이창희;김시향;이영우
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.967-972
    • /
    • 2001
  • The crystal and defect structures of U $O_{x}$(x=2.0, 2.03, 2.14, 2.19, 2.20 and 2.26) were analysed by rietveld refinement and the results were compared to the U-O phase diagram. Neutron diffraction data were collected in the temperature range of RT~100$0^{\circ}C$. The specimens of x=2.14, 2.19, and 2.20 consisted of two phase: $UO_{2+x}$(Fm3m, a≒5.4$\AA$) and $U_4$$O_{9}$(I43d, a≒21.8$\AA$). The proportion of the $UO_{2+x}$(Fm3m) phase increased with increasing the temperature. The variation of the proportion of the two phases with temperature in the U $O_{2.2}$ and U $O_{2.18}$ samples showed some deviation from the expected values from the phase diagram especially at the high temperature range. The phase transitions ${\gamma}$longrightarrow$\beta$longrightarrow$\alpha$ of $U_4$$O_{9}$ were discussed in relation with the phase separation.eparation.ion.

  • PDF

Thermal Compatibility of High Density U-Mo Powder Fuels Prepared by Centrifugal Atomization

  • Kim, Ki-Hwan;Ahn, Hyun-Suk;Chang, Se-Jung;Ko, Young-Mo;Lee, Don-Bae;Kim, Chang-Kyu;Kuk, Il-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.165-170
    • /
    • 1997
  • Samples of extruded dispersions of 24 vol.% spherical U-2wt%Mo and U-10wt.%Mo powders in an aluminum matrix were annealed for over 2,000 hours at 40$0^{\circ}C$. No significant dimensional changes occurred in the U-1025.%Mo/aluminum dispersions. The U-2wt.%Mo/aluminum dispersion, however, increased in volume by 26% after 2,000 hours at 40$0^{\circ}C$. This large volume change is mainly due to the formation of voids and cracks resulting from nearly complete interdiffusion of U-Mo and aluminum. Interdiffusion between U-10wt.%Mo and aluminum was found to be minimal. The different diffusion behavior is primarily due to the fact that U-2wt.%Mo decomposes from an as-atomized metastable r-phase(bcc) solid solution into the equilibrium r-U and U$_2$Mo two-phase structure during the experiment, whereas U-10wt.%Mo retains the metastable r-phase structure after the 2,000 hours anneal and thereby displays superior thermal compatibility with aluminum compared to U-2wt.%Mo. In addition, the molybdenium supersaturated in U-10wt.%Mo particles inhibits the diffusion of aluminum atoms along the grain boundary into the particle. Also, the dissolution of only a few Mo atoms in UAL$_3$ retards the formation of the intermediate phase, as Mo atoms need to migrate from new intermetallic compounds to unreacted islands.

  • PDF

Deriving of Major Risk Factors for Planning Phase of u-City Project (U-City사업 계획단계에서의 핵심 리스크 요인 도출)

  • Kim, Ho-Ki;Kwon, Soon-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.4
    • /
    • pp.139-148
    • /
    • 2011
  • u-City projects are different with the existing urban development projects progress via convergence with IT technology. Therefore, it inheres many risk factors more than the existing development projects as including more complexity and variety. The risk management system to systematically manage those risks which get identified and quantified is required. Especially, the planning phase that is appeared the various forms has a large effect on the success of the business. However, the management of risk factors remains in the passive form. So the problems on u-City project in the planning phase and risk factors of existing development business were analyzed for the continuous growth and the successful performance of u-City project, and those risk factors was identified and quantified by using statistical technique. In the results of it, the core risk factors were obtained through which way and the basis for the effective risk management in u-City business is provided.