Browse > Article

High Temperature Oxidation Behavior of Nd-doped $UO_2$  

Lee, Jae-Won (Korea Atomic Energy Research Institute)
Kang, Sang-Jun (Korea Atomic Energy Research Institute)
Kim, Young-Hwan (Korea Atomic Energy Research Institute)
Cho, Kwang-Hun (Korea Atomic Energy Research Institute)
Park, Guen-IL (Korea Atomic Energy Research Institute)
Lee, Jung-Won (Korea Atomic Energy Research Institute)
Publication Information
Applied Chemistry for Engineering / v.24, no.3, 2013 , pp. 227-230 More about this Journal
Abstract
The phase change of $(U_{1-x}Nd_x)_3O_8$ powder produced by oxidation of Nd-doped $UO_2$ pellet at $500^{\circ}C$ was investigated by high temperature oxidation heat treatment at $900{\sim}1500^{\circ}C$ under an air atmosphere. The XRD analysis results showed that the formation of $(U_{1-y}Nd_y)O_{2+z}$ phase and $U_3O_8$ phase from metastable $(U,Nd)_3O_8$ phase initiated at a temperature of $1000^{\circ}C$. The relative integrated intensity of $(U_{1-y}Nd_y)O_{2+z}$ phase to $U_3O_8$ phase increased with increasing of the oxidation temperature from 1100 to $1500^{\circ}C$. And also, it was found from the SEM observation that the particle size of $(U_{1-y}Nd_y)O_{2+z}$ phase increased with increasing of the oxidation temperature. However, electrone probe X-ray microanalyzer (EPMA) analysis results showed that Nd contents in $(U_{1-y}Nd_y)O_{2+z}$ phase decreased with increasing of the oxidation temperature. This behavior on the ground of XRD, SEM, and EPMA analysis data could be interpreted in terms of the transportation of U ions from $U_3O_8$ phase into $(U_{1-y}Nd_y)O_{2+z}$ phase through the interface of two phases during high temperature oxidation.
Keywords
thermal oxidation; phase separation; neutron absorber; neodymium; uranium oxides;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Labroche, O. Dugne, and C. Chatillon, J. Nucl. Mater., 312, 21 (2003).   DOI   ScienceOn
2 D. Labroche, O. Dugne, and C. Chatillon, J. Nucl. Mater., 312, 50 (2003).   DOI   ScienceOn
3 P. Taylor and R. J. McEachern, WO 96/36971 (1996).
4 J. H. Yang, K. W. Kang, K. S. Kim, K. W. Song, and J. H. Kim, J. Korean Nucl. Soc., 33, 307 (2001).
5 C. Keller, H. Engerer, L. Leitner, and U. Sriyotha, J. Inorg. Nucl. Chem., 31, 965 (1969).   DOI   ScienceOn
6 C. Keller and A. Boroujerdi, J. Inorg. Nucl. Chem., 34, 1187 (1972).   DOI   ScienceOn
7 U. Berndt, R. Tanamas, and C. Keller, J. Solid State Chem., 17, 113 (1976).   DOI   ScienceOn
8 I. B. De Alleluia, M. Hoshi, W. G. Jocher, and C. Keller, J. Inorg. Nucl. Chem., 43, 1831 (1981).   DOI   ScienceOn
9 R. J. Ackermann and A. T. Chang, J. Chem. Thermodyn., 5, 873 (1973).   DOI
10 E. D. Lynch, J. H. Handwerk, and C. L. Hoenig, J. Amer. Ceram. Soc., 43, 520 (1960).   DOI
11 A. M. Anthony, R. Kiyoura, and T. Sata, J. Nucl. Mater., 10, 8 (1963).   DOI   ScienceOn
12 H. Assmann and J. P. Robin, Guidebook on Quality Control of Mixed Oxides and Gadolinium Bearing Fuels for Light Water Reactors, IAEA (Ed.), IAEA-TECDOC-584, 51 (1983).
13 R. J. McEachern and P. Taylor, J. Nucl. Mater., 254, 87 (1998).   DOI   ScienceOn