• 제목/요약/키워드: U-net

검색결과 726건 처리시간 0.022초

형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지 (Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images)

  • 김휘송;김덕진;김준우
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.793-810
    • /
    • 2022
  • 실시간 범람 모니터링을 위해 인공위성 SAR영상을 활용하는 수체탐지에 대한 필요성이 대두되었다. 주야와 기상에 상관없이 주기적으로 촬영 가능한 인공위성 SAR 영상은 육지와 물의 영상학적 특징이 달라 수체탐지에 적합하나, 스페클 노이즈와 영상별 상이한 밝기 값 등의 한계를 내포하여 다양한 시기에 촬영된 영상에 일괄적으로 적용 가능한 수체탐지 알고리즘 개발이 쉽지 않다. 이를 위해 본 연구에서는 Convolutional Neural Networks (CNN)기반 모델인 U-Net 아키텍처에 레이어의 조합인 모듈을 추가하여 별도의 전처리 없이 수체탐지의 정확도 향상 방법을 제시하였다. 풀링 레이어의 조합을 활용하여 형태학적 연산처리 효과를 제공하는 Morphology Module과 전통적인 경계탐지 알고리즘의 가중치를 대입한 컨볼루션 레이어를 사용하여 경계 학습을 강화시키는 Edge-enhanced Module의 다양한 버전을 테스트하여, 최적의 모듈 구성을 도출하였다. 최적의 모듈 버전으로 판단된 min-pooling과 max-pooling이 연속으로 이어진 레이어와 min-pooling로 구성된 Morphology 모듈과 샤를(Scharr) 필터를 적용한 Edge-enhanced 모듈의 산출물을 U-Net 모델의 conv 9에 입력자료로 추가하였을 때, 정량적으로 9.81%의 F1-score 향상을 보여주었으며, 기존의 U-Net 모델이 탐지하지 못한 작은 수체와 경계선을 보다 세밀하게 탐지할 수 있는 성능을 정성적 평가를 통해 확인하였다.

아리랑 5호 위성 영상에서 수계의 의미론적 분할을 위한 딥러닝 모델의 비교 연구 (Comparative Study of Deep Learning Model for Semantic Segmentation of Water System in SAR Images of KOMPSAT-5)

  • 김민지;김승규;이도훈;감진규
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.206-214
    • /
    • 2022
  • The way to measure the extent of damage from floods and droughts is to identify changes in the extent of water systems. In order to effectively grasp this at a glance, satellite images are used. KOMPSAT-5 uses Synthetic Aperture Radar (SAR) to capture images regardless of weather conditions such as clouds and rain. In this paper, various deep learning models are applied to perform semantic segmentation of the water system in this SAR image and the performance is compared. The models used are U-net, V-Net, U2-Net, UNet 3+, PSPNet, Deeplab-V3, Deeplab-V3+ and PAN. In addition, performance comparison was performed when the data was augmented by applying elastic deformation to the existing SAR image dataset. As a result, without data augmentation, U-Net was the best with IoU of 97.25% and pixel accuracy of 98.53%. In case of data augmentation, Deeplab-V3 showed IoU of 95.15% and V-Net showed the best pixel accuracy of 96.86%.

SegFormer 및 U-Net의 철도 구성요소 객체 분할 성능 비교 (The Comparison of Segmentation Performance between SegFormer and U-Net on Railway Components)

  • 이재현;박창준;김남중;박준휘;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.347-348
    • /
    • 2024
  • 본 논문에서는 철도 구성요소 모니터링을 위한 효율적인 객체 분할 기법으로 사전학습된 SegFormer 모델의 적용을 제안하고, 객체 분할을 위해 보편적으로 사용되는 U-Net 모델과의 성능 비교 분석을 진행하였다. 철도의 주요 구성요소인 선로, 침목, 고정 장치, 배경을 분할할 수 있도록 라벨링된 데이터셋을 학습에 사용하였다. SegFormer 모델이 대조군인 U-Net보다 성능이 Jaccard Score 기준 5.29% 향상됨에 따라 Vision Transformer 기반의 모델이 기존 CNN 기반 모델의 이미지의 전역적인 문맥을 파악하기 상대적으로 어렵다는 한계를 극복하고, 철도 구성요소 객체 분할에 더욱 효율적인 모델임을 확인한다.

  • PDF

깊은 잔차 U-Net 구조를 이용한 실제 카메라 잡음 영상 디노이징 (Real-world noisy image denoising using deep residual U-Net structure)

  • 장영실;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.119-121
    • /
    • 2019
  • 부가적 백색 잡음 모델(additive white Gaussian noise, AWGN에서 학습된 깊은 신경만 (deep neural networks)을 이용한 잡음 제거기는 제거하려는 잡음이 AWGN인 경우에는 뛰어난 성능을 보이지만 실제 카메라 잡음에 대해서 잡음 제거를 시도하였을 때는 성능이 크게 저하된다. 본 논문은 U-Net 구조의 깊은 인공신경망 모델에 residual block을 결합함으로서 실제 카메라 영상에서 기존 알고리즘보다 뛰어난 성능을 지니는 신경망을 제안하다. 제안한 방법을 통해 Darmstadt Noise Dataset에서 PSNR과 SSIM 모두 CBDNet 대비 향상됨을 확인하였다.

  • PDF

ATLAS V2.0 데이터에서 의료영상 분할 모델 성능 비교 (Comparison of Performance of Medical Image Semantic Segmentation Model in ATLASV2.0 Data)

  • 우소연;구영현;유성준
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.267-274
    • /
    • 2023
  • 의료영상 공개 데이터는 수집에 한계가 있어 데이터셋의 양이 부족하다는 문제점이 있다. 때문에 기존 연구들은 공개 데이터셋에 과적합 되었을 우려가 있다. 본 논문은 실험을 통해 8개의 (Unet, X-Net, HarDNet, SegNet, PSPNet, SwinUnet, 3D-ResU-Net, UNETR) 의료영상 분할 모델의 성능을 비교함으로써 기존 모델의 성능을 재검증하고자 한다. 뇌졸중 진단 공개 데이터 셋인 Anatomical Tracings of Lesions After Stroke(ATLAS) V1.2과 ATLAS V2.0에서 모델들의 성능 비교 실험을 진행한다. 실험결과 대부분 모델은 V1.2과 V2.0에서 성능이 비슷한 결과를 보였다. 하지만 X-net과 3D-ResU-Net는 V1.2 데이터셋에서 더 높은 성능을 기록했다. 이러한 결과는 해당 모델들이 V1.2에 과적합 되었을 것으로 해석할 수 있다.

Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms

  • Ilsang Woo;Areum Lee;Seung Chai Jung;Hyunna Lee;Namkug Kim;Se Jin Cho;Donghyun Kim;Jungbin Lee;Leonard Sunwoo;Dong-Wha Kang
    • Korean Journal of Radiology
    • /
    • 제20권8호
    • /
    • pp.1275-1284
    • /
    • 2019
  • Objective: To develop algorithms using convolutional neural networks (CNNs) for automatic segmentation of acute ischemic lesions on diffusion-weighted imaging (DWI) and compare them with conventional algorithms, including a thresholding-based segmentation. Materials and Methods: Between September 2005 and August 2015, 429 patients presenting with acute cerebral ischemia (training:validation:test set = 246:89:94) were retrospectively enrolled in this study, which was performed under Institutional Review Board approval. Ground truth segmentations for acute ischemic lesions on DWI were manually drawn under the consensus of two expert radiologists. CNN algorithms were developed using two-dimensional U-Net with squeeze-and-excitation blocks (U-Net) and a DenseNet with squeeze-and-excitation blocks (DenseNet) with squeeze-and-excitation operations for automatic segmentation of acute ischemic lesions on DWI. The CNN algorithms were compared with conventional algorithms based on DWI and the apparent diffusion coefficient (ADC) signal intensity. The performances of the algorithms were assessed using the Dice index with 5-fold cross-validation. The Dice indices were analyzed according to infarct volumes (< 10 mL, ≥ 10 mL), number of infarcts (≤ 5, 6-10, ≥ 11), and b-value of 1000 (b1000) signal intensities (< 50, 50-100, > 100), time intervals to DWI, and DWI protocols. Results: The CNN algorithms were significantly superior to conventional algorithms (p < 0.001). Dice indices for the CNN algorithms were 0.85 for U-Net and DenseNet and 0.86 for an ensemble of U-Net and DenseNet, while the indices were 0.58 for ADC-b1000 and b1000-ADC and 0.52 for the commercial ADC algorithm. The Dice indices for small and large lesions, respectively, were 0.81 and 0.88 with U-Net, 0.80 and 0.88 with DenseNet, and 0.82 and 0.89 with the ensemble of U-Net and DenseNet. The CNN algorithms showed significant differences in Dice indices according to infarct volumes (p < 0.001). Conclusion: The CNN algorithm for automatic segmentation of acute ischemic lesions on DWI achieved Dice indices greater than or equal to 0.85 and showed superior performance to conventional algorithms.

Comparing U-Net convolutional network with mask R-CNN in Nuclei Segmentation

  • Zanaty, E.A.;Abdel-Aty, Mahmoud M.;ali, Khalid abdel-wahab
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.273-275
    • /
    • 2022
  • Deep Learning is used nowadays in Nuclei segmentation. While recent developments in theory and open-source software have made these tools easier to implement, expert knowledge is still required to choose the exemplary model architecture and training setup. We compare two popular segmentation frameworks, U-Net and Mask-RCNN, in the nuclei segmentation task and find that they have different strengths and failures. we compared both models aiming for the best nuclei segmentation performance. Experimental Results of Nuclei Medical Images Segmentation using U-NET algorithm Outperform Mask R-CNN Algorithm.

Nested U-Net 기반 잡음 제거를 위한 two-level skip connection 제안 및 성능 비교 평가 (Performance comparative evaluation of Two-level skip connection for nested U-Net-based noise cancellation)

  • 황서림;변준;허준영;차재빈;박영철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.228-230
    • /
    • 2022
  • 본 논문은 최근 잡음 제거에서 우수한 성능을 보인 Nested U-Net의 성능을 최적화하기 위하여 두 단계로 이루어진 two-level skip connection (TLS)을 제안하였다. 이때, 인코더와 디코더의 경로를 다르게 하여 다양한 형태의 TLS을 제안하고 각 형태의 성능을 비교 평가하였다. 또한, 가장 좋은 성능을 보인 두 개의 경로를 조합하여 최종 Nested U-Net 기반 모델을 제안하였다. 제안된 모델은 다른 잡음 제거 모델과 비교하여 객관적인 평가 지표에서 매우 우수한 성능을 보인다.

  • PDF

U-net을 활용한 연기 Segmentation 탐지 기법 (A Smoke Segmentation Detection Method on U-net)

  • 곽경민;즈엉투이짱;노영주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.81-83
    • /
    • 2021
  • 4차 산업 혁명과 함께 인공지능이 발전 하고 있다. 그 CNN 등 과 같은 이미지 관련 신경망들이 발전되어 가스 탐지와 같은 여러 분야에서 사용되고 있다. 하지만 가스 탐지는 Box 형태의 탐지가 일반적이고 Segmentation에 관한 연구는 있지만 연기와 같이 경계선이 불분명한 개체에 대해서는 연구가 미비하다. 본 논문에서는 Segmentation에 강력한 성능을 보이는 U-net을 활용하여 Box 형태가 아닌 Segmentation을 진행하여 픽셀단위로 연기를 탐지하고자 한다.

  • PDF

Precise segmentation of fetal head in ultrasound images using improved U-Net model

  • Vimala Nagabotu;Anupama Namburu
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.526-537
    • /
    • 2024
  • Monitoring fetal growth in utero is crucial to anomaly diagnosis. However, current computer-vision models struggle to accurately assess the key metrics (i.e., head circumference and occipitofrontal and biparietal diameters) from ultrasound images, largely owing to a lack of training data. Mitigation usually entails image augmentation (e.g., flipping, rotating, scaling, and translating). Nevertheless, the accuracy of our task remains insufficient. Hence, we offer a U-Net fetal head measurement tool that leverages a hybrid Dice and binary cross-entropy loss to compute the similarity between actual and predicted segmented regions. Ellipse-fitted two-dimensional ultrasound images acquired from the HC18 dataset are input, and their lower feature layers are reused for efficiency. During regression, a novel region of interest pooling layer extracts elliptical feature maps, and during segmentation, feature pyramids fuse field-layer data with a new scale attention method to reduce noise. Performance is measured by Dice similarity, mean pixel accuracy, and mean intersection-over-union, giving 97.90%, 99.18%, and 97.81% scores, respectively, which match or outperform the best U-Net models.