• Title/Summary/Keyword: U-Printer

Search Result 27, Processing Time 0.024 seconds

레이저 빔 프린터의 기술현황

  • Song, Gyeong-Jun;Park, U-Nak
    • ETRI Journal
    • /
    • v.9 no.1
    • /
    • pp.165-172
    • /
    • 1987
  • 본고에서는 컴퓨터의 출력장치로서 최근 가장 인기를 얻고 있는 논-임팩트 레이저 페이지 프린터(non-mpact laser page printer), 즉 레이저 빔 프린터(LBP : Laser Beam Printer)의 성능 및 특성에 관한 고찰과 현재 시판중인 desktop 레이저 빔 프린터를 비교 분석하고 그 응용사례에 대해서 간단히 소개하고자 한다.

  • PDF

A Study on the Fabrication and Comparison of the Phantom for Computed Tomography Image Quality Measurements Using Three-Dimensions Printing Technology (삼차원 프린팅 기술을 이용한 전산화단층영상 품질 측정용 팬텀 제작 및 비교 연구)

  • Yoon, Myeong-Seong;Hong, Soon-Min;Heo, Yeong-Cheol;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.595-602
    • /
    • 2018
  • Quality control (QC) of Computed Tomography (CT) devices is based on image quality measurement on AAPM CT phantom which is a standard phantom. Although it is possible to control the accuracy of the CT apparatus, it is expensive and has a disadvantage of low penetration rate. Therefore, in this study, we make image quality measurement phantom at low cost using FFF (Fused Filament Fabrication) type three-dimensional printer and try to analyze the usefulness, compare it with existing standard phantom. To print a phantom, We used three-dimensional printer of the FFF system and PLA (Poly Lactic Acid, density: $1.24g/cm^3$) filament, and the CT device of 64 MDCT (Aquilion CX, Toshiba, Japan). In addition, we printed a phantom using three-dimensional printer after design using various tool based on existing standard phantom. For image quality evaluation, AAPM CT phantom and self-generated phantom were measured 10 times for each block. The measured data were analyzed for significance using the Mannwhiteney U-test of SPSS (Version 22.0, SPSS, Chicago, IL, USA). As a result of the analysis, phantom fabricated with three-dimensional printer and standard phantom showed no significant difference (p>0.05). Furthermore, we confirmed that image quality measurement performance of a phantom using three-dimensional printer is similar to the existing standard phantom. In conclusion, we confirmed the possibility of low cost phantom fabrication using three dimensional printer.

A Study on a New Hybrid Induction Heating System for Laser Printer (Laser Printer용 Hybrid 유도가열 시스템 특성에 관한 연구)

  • Chae, Young-Min;Kim, Jin-Ha;Kwon, Joong-Gi;Han, Sang-Yong;Sung, Hwan-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.466-468
    • /
    • 2005
  • Recently, the demand for the development of high quality and high speed laser printer and efficient power utilizations are required. Among complicate electro-mechanic devices in laser printer, the toner fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of more effective energy-saving toner fusing process becomes a significant task of much great demand. Generally, there are several way to implement fusing unit, among them this paper present a new hybrid induction heating method. The proposed induction heating method enables to increase coupling coefficient between heating coil and heat roller also to Increase total energy transfer efficiency. Therefore the proposed IH inverter system provide very fast W.U.T.(Warm UP Time), also high efficiency. Through experimental result, the proposed control system is verified.

  • PDF

Developing Integrated Compressor Cooler System of 3D Printing Nozzle (3D 프린팅 노즐의 일체형 압출기 쿨링 시스템 개발)

  • Son, Ji-Hwan;Park, Hyun-Woo;Ha, Dong-Woo;Lee, Chang-U;Kim, Jin-Su;Kang, Seong-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In a large 3D printer when the cooler, which cools the filament, acts in one direction, the area directly exposed to the cooling is cooled to the proper temperature. However, the cooling effect on the opposite area is relatively less. It was found in experiments that filaments with a thickness of over 2 mm exhibit the cooling problem in one directional cooling. Consequently, cooling was performed to prevent the flow-down and to produce firm support leading to an improvement in product quality in extrusion. Further, the lay-up of a 3D printer with five guides combined with a duct was achieved. Analysis showed that the improvement in the cooling effect enables stable extrusion and lay-up and thus, reduces fabrication time.

Comparative analysis of the flexural strength of provisional restorative resins using a digital light processing printer according to the post-curing method (디지털 광원 처리 프린터로 제작된 임시수복용 레진의 후경화 기계에 따른 굴곡강도 연구)

  • Park, Young-Dae;Kang, Wol
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.341-347
    • /
    • 2020
  • Purpose: This study aimed to evaluate the effect of post-curing method on the flexural strength of provisional restorative resins produced by a digital light processing printer. Methods: A total of 20 specimens were produced, with a length of 64 mm, width of 10 mm, and thickness of 3.3 mm using a digital light processing printer. Two types of provisional restorative resins made with different post-curing methods were investigated and divided into conventional and vacuum groups. For the flexural strength test, each group was prepared by each method according to ISO 10477, and the flexural strength was measured with a universal testing machine. For statistical analysis, data were analyzed by independent t-test and Mann-Whitney U test. Results: The flexural strengths of the conventional and vacuum groups were 151.89 MPa and 131.94 MPa, respectively, showing a statistically significant difference (p<0.05). Conclusion: Within the limitation of this study, provisional restorative resins produced with vacuum demonstrated lower flexural strength than those produced with conventional postcuring method.

Development of Hybrid Induction Heating System for Laser Printer

  • Chae Young-Min;Kwon Joong-Gi;Han Sang-Yong;Sung Hwan-Ho
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.178-185
    • /
    • 2006
  • Recently, the demand for the development of high quality and high-speed laser printers and efficient power utilization has required. Among complicated electro-mechanic devices in laser printers, the toner-fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of a more effective energy-saving toner fusing process becomes a significant task in great demand. Generally, there are several ways to implement a fusing unit. Among them this paper presents a new induction heating method. The proposed induction heating method enables the increase of coupling coefficient between heating coil and heat roller which also increases total energy transfer efficiency. Therefore, the proposed IH (Induction Heating) inverter system provides very fast W.U.T. (Warm UP Time) as well as higher efficiency. Through experimental results, the proposed control system is verified.

Differences in muscle activity by IASTM between a tool made of PLA made with a 3D printer and a ready-made tool made of stainless steel (3D프린터로 제작된 PLA재질의 도구와 기성품인 스테인리스 스틸 재질의 도구 사이의 연부조직 가동술에 의한 근활성도 차이)

  • Kim, Chung-Yoo;Kang, Jong-Ho;Tae, Won-Kyu
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.218-223
    • /
    • 2020
  • This study was conducted to observe the difference in muscle activity by IASTM between a tool made of PLA made with a 3D printer and a tool made of ready-made stainless steel. This study was attended by 10 adults in their twenties, and all subjects participated in both the PLA group and the Stainless group, received IASTM. %MVIC was measured by measuring muscle activity after intervention, and this was verified through comparison between groups through the Mann-Whitney U test. The results of this study showed that there was no significant difference between the two groups in the %MVIC value of the biceps brachii after intervention. Therefore, in the application of IASTM, there was no difference in muscle activity depending on the material of the tool, which seems to be that the IASTM tool made of PLA made with a 3D printer produced similar results in the ability to control neuromuscular muscles and the ready-made product made of stainless steel. Therefore, in a future study, the effectiveness of the tool will be verified for the various patient group.

Ubiquitous Campus Model for Students Oriented (학생 중심의 유비쿼터스 캠퍼스모델)

  • Kim, Chang-Su;Lee, Jae-Hyuk;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1407-1413
    • /
    • 2007
  • University environment on campus has been changed faster than before in today. Especially, they have devised middle & long-term development plans such as improving the image of campus and increasing campus competitive power to overcome difficulties in campus management. Therefore, many of those have made every effort to provide convenient university services for campus students and to improve the image of campus through building a Ubiquitous-Campus. But existing systems of a Ubiquitous-Campus have not understood actual conditions of IT (Information Technology) for campus students or not provided basic environment to analyze actual conditions of efficient using the system, expectations of the following people about a Ubiquitous-Campus is getting higher md higher though. Must become technology base ubiquitous campus construction, and is real erudition that ubiquitous campus model who can utilize substantially through service construction that is required newly with student's IT infra practical use analysis hereupon such as is required to solve these problems, But there is a limitation on designing the model in rapidly changed university environment on campus. In this paper, we studied about a Students Centralized Ubiquitous Campus model through U-Learning, U-Recruit, U-Printer, and personal information history service which are based on data warehouse for students analysis which is a key point element of building a Ubiquitous Campus.

Marginal and internal fit of interim crowns fabricated with 3D printing and milling method (3D 프린팅 및 밀링 방법으로 제작된 임시 보철물 적합도 비교 분석)

  • Son, Young-Tak;Son, KeunBaDa;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.254-261
    • /
    • 2020
  • Purpose: The purpose of this study was to assess the marginal and internal fit of interim crowns fabricated by two different manufacturing method (subtractive manufacturing technology and additive manufacturing technology). Materials and Methods: Forty study models were fabricated with plasters by making an impression of a master model of the maxillary right first molar for ceramic crown. On each study model, interim crowns (n = 40) were fabricated using three types of 3D printers (Meg-printer 2; Megagen, Zenith U; Dentis, and Zenith D; Dentis) and one type milling machine (imes-icore 450i; imes-icore GmbH). The internal of the interim crowns were filled with silicon and fitted to the study model. Internal scan data was obtained using an intraoral scanner. The fit of interim crowns were evaluated in the margin, absolute margin, axial, cusp, and occlusal area by using the superimposition of 3D scan data (Geomagic control X; 3D Systems). The Kruskal-wallis test, Mann-Whitney U test and Bonferroni correction method were used to compare the results among groups (α = 0.05). Results: There was no significant difference in the absolute marginal discrepancy of the temporary crown manufactured by three 3D printers and one milling machine (P = 0.812). There was a significant difference between the milling machine and the 3D printer in the axial and occlusal area (P < 0.001). The temporary crown with the milling machine showed smaller axial gap and higher occlusal gap than 3D printer. Conclusion: Since the marginal fit of the temporary crown produced by three types of 3D printers were all with in clinically acceptable range (< 120 ㎛), it can be sufficiently used for the fabrication of the temporary crown.

A Study on the Fabrication and Comparison of the Phantom for CT Dose Measurements Using 3D Printer (3D프린터를 이용한 CT 선량측정 팬텀 제작 및 비교에 관한 연구)

  • Yoon, Myeong-Seong;Kang, Seong-Hyeon;Hong, Soon-Min;Lee, Youngjin;Han, Dong-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.737-743
    • /
    • 2018
  • Patient exposure dose exposure test, which is one of the items of accuracy control of Computed Tomography, conducts measurements every year based on the installation and operation of special medical equipment under Article 38 of the Medical Law, And keep records. The CT-Dose phantom used for dosimetry can accurately measure doses, but has the disadvantage of high price. Therefore, through this research, the existing CT - Dose phantom was similarly manufactured with a 3D printer and compared with the existing phantom to examine the usefulness. In order to produce the same phantom as the conventional CT-Dose phantom, a 3D printer of the FFF method is used by using a PLA filament, and in order to calculate the CTDIw value, Ion chambers were inserted into the central part and the central part, and measurements were made ten times each. Measurement results The CT-Dose phantom was measured at $30.44{\pm}0.31mGy$ in the periphery, $29.55{\pm}0.34mGy$ CTDIw value was measured at $30.14{\pm}0.30mGy$ in the center, and the phantom fabricated using the 3D printer was measured at the periphery $30.59{\pm}0.18mGy$, the central part was $29.01{\pm}0.04mGy$, and the CTDIw value was measured at $30.06{\pm}0.13mGy$. Analysis using the Mann - Whiteney U-test of the SPSS statistical program showed that there was a statistically significant difference in the result values in the central part, but statistically significant differences were observed between the peripheral part and CTDIw results I did not show. In conclusion, even in the CT-Dose phantom made with a 3D printer, we showed dose measurement performance like existing CT-Dose phantom and confirmed the possibility of low-cost phantom production using 3D printer through this research did it.