원격탐사 기술을 활용한 접근불능 지역에 대한 핵활동 모니터링은 핵 비확산을 위해 필수적이다. 최근에는 딥러닝을 이용하여 핵활동 관련 객체를 탐지하는 연구가 활발하게 수행되고 있으나, 고해상도 위성영상 내 소형객체는 클래스 불균형 발생 빈도가 높다. 이로 인해 소형객체 탐지 성능이 저하되는 문제점이 존재한다. 이에 본 연구에서는 입력 데이터 내 핵활동 관련 소형객체의 비율이 딥러닝 모델 성능에 미치는 영향을 분석하여 탐지 정확도를 개선하기 위한 방안을 도출하고자 한다. 이를 위해 소형객체 비율이 상이한 6가지 학습자료를 구축하여 학습자료별로 U-Net 모델 학습을 진행하고, 다양한 종류의 소형객체가 포함된 test dataset을 이용하여 학습된 U-Net 모델 간 정량적·정성적 비교평가를 수행하였다. 그 결과, 입력영상 내 객체 픽셀 비율을 조절하였을 때 핵활동 관련 소형객체를 효과적으로 탐지할 수 있는 것이 확인되었으며, 이를 통해 훈련 자료 내 객체 비율을 조정하여 딥러닝 모델 성능을 향상시킬 수 있을 것으로 판단된다.
Breast cancer is one of the most common cancers in women worldwide. In Korea, breast cancer is most common cancer in women followed by thyroid cancer. The purpose of this study is to evaluate the possibility of using deep - run model for segmentation of breast masses and to identify the best deep-run model for breast mass segmentation. In this study, data of patients with breast masses were collected at Asan Medical Center. We used 596 images of mammography and 596 images of gold standard. In the area of interest of the medical image, it was cut into a rectangular shape with a margin of about 10% up and down, and then converted into an 8-bit image by adjusting the window width and level. Also, the size of the image was resampled to $150{\times}150$. In Deconvolution net, the average accuracy is 91.78%. In U-net, the average accuracy is 90.09%. Deconvolution net showed slightly better performance than U-net in this study, so it is expected that deconvolution net will be better for breast mass segmentation. However, because of few cases, there are a few images that are not accurately segmented. Therefore, more research is needed with various training data.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권4호
/
pp.1246-1262
/
2021
Recent studies have demonstrated the strong ability of deep convolutional neural networks (CNNs) to significantly boost the performance in single image super-resolution (SISR). The key concern is how to efficiently recover and utilize diverse information frequencies across multiple network layers, which is crucial to satisfying super-resolution image reconstructions. Hence, previous work made great efforts to potently incorporate hierarchical frequencies through various sophisticated architectures. Nevertheless, economical SISR also requires a capable structure design to balance between restoration accuracy and computational complexity, which is still a challenge for existing techniques. In this paper, we tackle this problem by proposing a competent architecture called Enhanced U-Net Network (EUN), which can yield ready-to-use features in miscellaneous frequencies and combine them comprehensively. In particular, the proposed building block for EUN is enhanced from U-Net, which can extract abundant information via multiple skip concatenations. The network configuration allows the pipeline to propagate information from lower layers to higher ones. Meanwhile, the block itself is committed to growing quite deep in layers, which empowers different types of information to spring from a single block. Furthermore, due to its strong advantage in distilling effective information, promising results are guaranteed with comparatively fewer filters. Comprehensive experiments manifest our model can achieve favorable performance over that of state-of-the-art methods, especially in terms of computational efficiency.
기존 객체탐지는 경계 상자 회귀방식을 적용하였지만, 문자는 왜곡과 변형이 심한 특성을 가진 객체로 U-net 구조의 이미지 분할 방식을 사용하는 경우가 많다. 따라서 최근 문자 탐지는 통계적 모델에 비해 높은 정확도를 보이는 심층 신경망 기반의 모델 연구가 많이 진행되고 있다. 본 연구에서는 이미지 분할을 통한 양방향 특징 결합 기법을 사용한 문자 탐지 모델을 제안한다. 이미지 분할 방식은 메모리의 효율이 떨어지기 때문에 이를 극복하고자 특징 추출 단계에서 경량화된 네트워크를 적용하였다. 또한, 객체 탐지에서 큰 성과를 보인 양방향 특징 결합 모듈을 U-net 구조에 추가하여 추출된 특징이 효과적으로 결합 되는 결과를 얻었다. 제안하는 모델의 문자 탐지 성능은 합성 문자 데이터셋을 이용한 실험을 통해 기존의 U-net 구조의 이미지 분할 방식보다 향상되었음을 확인하였다.
e-비즈니스 환경 하에서 전자적 데이터 교환 또는 WEB을 이용한 비즈니스 트랜잭션 처리를 통해 산업 부분별 자동화나 정보화가 활발히 진행되었다. 전자적으로 데이터를 처리함으로 인해 기존 오프라인을 이용한 비즈니스 환경 보다는 처리 속도나 처리 시간이 단축되었으며 비용도 많이 절감되었다. 그러나 점차 실시간적으로 데이터를 처리하거나 실시간적으로 화물에 대한 흐름을 추적하고자 하는 사용자들의 요구사항이 도출되기 시작하였다. 이에 RFID, USN 등의 유비쿼터스 개념과 기술을 이용한 u-비즈니스가 도입되어 각 분야에 활발히 적용되고 있다. 특히 유통이나 운송 등 물류 분야에 유비쿼터스 기술이 적용됨으로 실시간으로 데이터를 수집할 수 있어 화물의 흐름 추적을 용이할 수 있는 기반이 되고 있다. 본 논문에서는 새로운 비즈니스 환경에 적합하도록 EPC Global 표준에 따라 개발된 RFID 미들웨어를 항만 물류 비즈니스에 적용할 수 있는 비즈니스 모델을 정의하였다. 또한 정의한 비즈니스 모델을 항만 물류 분야에 적용한 사례와 적용 결과에 대해 논의하고자 한다.
Crack detection is an essential method to ensure the safety of dam concrete structures. Low-quality crack images of dam concrete structures limit the application of neural network methods in crack detection. This research proposes a modified attentional mechanism model to reduce the disturbance caused by uneven light, shadow, and water spots in crack images. Also, the focal loss function solves the small ratio of crack information. The dataset collects from the network, laboratory and actual inspection dataset of dam concrete structures. This research proposes a novel method for crack detection of dam concrete structures based on the U-Net neural network, namely AF-UNet. A mutual comparison of OTSU, Canny, region growing, DeepLab V3+, SegFormer, U-Net, and AF-UNet (proposed) verified the detection accuracy. A binocular camera detects cracks in the experimental scene. The smallest measurement width of the system is 0.27 mm. The potential goal is to achieve real-time detection and localization of cracks in dam concrete structures.
Ming Hu;Lifa Hu;Hongyan Wang;Qi Zhang;Xingyu Xu;Lin Yu;Jingjing Wu;Yang Huang
Current Optics and Photonics
/
제8권2호
/
pp.183-191
/
2024
High-resolution retinal imaging based on adaptive optics (AO) is important for early diagnosis related to retinal diseases. However, in practical applications, closed-loop AO correction takes a relatively long time, and traditional open-loop correction methods have low accuracy in correction, leading to unsatisfactory imaging results. In this paper, a SH-U-net-based open-loop AO wavefront correction method is presented for a retinal AO imaging system. The SH-U-net builds a mathematical model of the entire AO system through data training, and the Root mean square (RMS) of the distorted wavefront is 0.08λ after correction in the simulation. Furthermore, it has been validated in experiments. The method improves the accuracy of wavefront correction and shortens the correction time.
본 논문에서는 고해상도의 위성영상을 활용하여 도시의 변화 양상을 분석하기 위하여 SPADE기반의 U-Net과 객체 영역기반 변화탐지 방법을 제안한다. 제안하는 네트워크는 기존의 U-Net에서 공간 정보를 잃지 않기 위해 SPADE를 사용했다. 고해상도 위성영상을 활용한 변화탐지 방법은 계획, 예측 등 다양한 도시 문제를 해결하기 위해 활용할 수 있다. IR-MAD 등 전통적인 방법인 화소 기반의 변화탐지를 수행할 경우, 다중 시기 영상 간의 기후, 계절 변화 등에 의해 화소의 변화가 민감하기 때문에 미변화 지역들이 변화 지역으로 오탐지될 가능성이 매우 크다. 이에 본 논문에서는 시계열 위성영상에서 도시를 구성하는 객체에 대한 변위를 정확하게 탐지하기 위해 도시를 구성하는 주요 공간 객체를 정의하고, 딥러닝 기반 영상 분할을 통해 추출한 후 영역 간의 변위 오차를 분석하여 변화탐지를 수행한다. 변화 양상을 분석하기 위한 공간 객체로 건축물, 도로, 농경지, 비닐하우스, 산림 영역, 수변 영역의 6개로 정의하였다. KOMPSAT-3A 위성영상으로 학습한 각 네트워크 모델을 시계열 KOMPSAT-3 위성영상에 대한 변화탐지를 수행한다. 객관적인 성능 평가를 위한 변화탐지 지표는 F1-score, Kappa를 사용한다. 제안하는 변화탐지 기법은 U-Net, UNet++ 대비 뛰어난 결과를 보이며, 평균 F1 score는 0.77, kappa는 77.29의 성능을 확인할 수 있다.
The malignant melanoma accounts for about 1 to 3% of the total malignant tumor in the West, especially in the US, it is a disease that causes more than 9,000 deaths each year. Generally, skin lesions are difficult to detect the features through photography. In this paper, we propose a computer-aided diagnosis algorithm based on deep learning for classification of malignant melanoma and benign skin tumor in RGB channel skin images. The proposed deep learning model configures the tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to segment a skin lesion area in the dermoscopic image. We could implement algorithms to classify malignant melanoma and benign tumor using skin lesion image and results of expert's labeling in ResNet. The U-Net model obtained a dice similarity coefficient of 83.45% compared with results of expert's labeling. The classification accuracy of malignant melanoma obtained the 83.06%. As the result, it is expected that the proposed artificial intelligence algorithm will utilize as a computer-aided diagnosis algorithm and help to detect malignant melanoma at an early stage.
대단위 신재생 에너지 발전단지의 효율적인 유지관리를 위해 드론의 활용이 점차 증가하고 있다. 오래전부터 태양광 패널을 드론으로 촬영하여 패널의 유실 및 오염 등을 관리하고 있다. 본 논문에서는 열화상카메라를 장착한 드론을 이용하여 획득된 태양광패널 이미지에서 아크, 단선, 크랙 등의 고장 유무를 판별하기 위해 시멘틱세그멘테이션 기법을 이용한 분류모델을 제안한다. 또한 적은 데이터셋으로도 강인한 분류 성능을 보이는 U-Net의 튜닝을 통해 효율적인 분류모델을 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.