• 제목/요약/키워드: U-Net Model

검색결과 242건 처리시간 0.027초

U-Net을 이용한 무인항공기 비정상 비행 탐지 기법 연구 (Abnormal Flight Detection Technique of UAV based on U-Net)

  • 송명재;최은주;김병수;문용호
    • 항공우주시스템공학회지
    • /
    • 제18권3호
    • /
    • pp.41-47
    • /
    • 2024
  • 최근에 무인항공기의 실용화 및 사업화가 추진됨에 따라 무인항공기의 안전성 확보에 관한 관심이 증가하고 있다. 무인항공기의 사고는 재산 및 인명 피해를 발생시키기 때문에 사고를 예방할 수 있는 기술의 개발은 중요하다. 이러한 이유로 AutoEncoder 모델을 이용한 비정상 비행 상태 탐지 기법이 개발되었다. 그러나 기존 탐지 기법은 성능과 실시간 처리 측면에서 한계를 지닌다. 본 논문에서는 U-Net 기반 비정상 비행 탐지 기법을 제안한다. 제안하는 기법에서는 U-Net 모델에서 얻어지는 재구성 오차에 대한 마할라노비스 거리 증가량에 기반하여 비정상 비행이 탐지된다. 모의실험을 통해 제안 탐지 기법이 기존 탐지 기법에 비해 탐지 성능이 우수하며 온보드 환경에서 실시간으로 구동될 수 있음을 알 수 있다.

폐 CT 영상에서 다양한 노이즈 타입에 따른 딥러닝 네트워크를 이용한 영상의 질 향상에 관한 연구 (Study on the Improvement of Lung CT Image Quality using 2D Deep Learning Network according to Various Noise Types)

  • 이민관;박찬록
    • 한국방사선학회논문지
    • /
    • 제18권2호
    • /
    • pp.93-99
    • /
    • 2024
  • 디지털 영상, 특히, 전산화 단층촬영 영상은 X선 신호를 디지털 영상 신호로 변환하는 과정에서 노이즈가 필수적으로 포함되기 때문에 노이즈 저감화에 대한 고려가 필수적이다. 최근, 딥러닝 모델 기반의 노이즈 감소가 가능한 연구가 수행되고 있다. 그러므로, 본 연구의 목적은 폐 CT 영상에서의 다양한 종류의 노이즈를 U-net 딥러닝 모델을 이용하여 노이즈 감소 효과를 평가하였다. 총 800장의 폐 CT 영상을 사용하였고, Adam 최적화 함수와 100회의 반복 학습 횟수, 0.0001의 학습률을 적용한 U-net 모델을 이용하였다. 노이즈를 포함한 입력 영상 생성을 위하여 Gaussian 노이즈, Poisson 노이즈, salt & pepper 노이즈, speckle 노이즈를 적용하였다. 정량적 분석 인자로 평균 제곱 오차, 최대 신호 대 잡음비, 영상의 변동계수를 사용하여 분석하였다. 결과적으로, U-net 네트워크는 다양한 노이즈 조건에서 우수한 성능을 나타냈으며 그 효용성을 입증하였다.

임베디드 연산을 위한 잡음에서 음성추출 U-Net 설계 (Design of Speech Enhancement U-Net for Embedded Computing)

  • 김현돈
    • 대한임베디드공학회논문지
    • /
    • 제15권5호
    • /
    • pp.227-234
    • /
    • 2020
  • In this paper, we propose wav-U-Net to improve speech enhancement in heavy noisy environments, and it has implemented three principal techniques. First, as input data, we use 128 modified Mel-scale filter banks which can reduce computational burden instead of 512 frequency bins. Mel-scale aims to mimic the non-linear human ear perception of sound by being more discriminative at lower frequencies and less discriminative at higher frequencies. Therefore, Mel-scale is the suitable feature considering both performance and computing power because our proposed network focuses on speech signals. Second, we add a simple ResNet as pre-processing that helps our proposed network make estimated speech signals clear and suppress high-frequency noises. Finally, the proposed U-Net model shows significant performance regardless of the kinds of noise. Especially, despite using a single channel, we confirmed that it can well deal with non-stationary noises whose frequency properties are dynamically changed, and it is possible to estimate speech signals from noisy speech signals even in extremely noisy environments where noises are much lauder than speech (less than SNR 0dB). The performance on our proposed wav-U-Net was improved by about 200% on SDR and 460% on NSDR compared to the conventional Jansson's wav-U-Net. Also, it was confirmed that the processing time of out wav-U-Net with 128 modified Mel-scale filter banks was about 2.7 times faster than the common wav-U-Net with 512 frequency bins as input values.

SKU-Net: Improved U-Net using Selective Kernel Convolution for Retinal Vessel Segmentation

  • Hwang, Dong-Hwan;Moon, Gwi-Seong;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.29-37
    • /
    • 2021
  • 본 논문에서는 안저영상의 다중 스케일 정보를 다루기 위한 딥러닝 기반의 망막 혈관 분할 모델을 제안한다. 제안 모델은 이미지 분할 딥러닝 모델인 U-Net과 선택적 커널 합성곱을 통합한 합성곱 신경망으로 안저영상에서 눈과 관련된 질병을 진단하는데 중요한 정보가 되는 망막 혈관의 다양한 모양과 크기를 갖는 특징 정보를 추출하고 분할한다. 제안 모델은 일반적인 합성곱과 선택적 커널 합성곱으로 구성된다. 일반적인 합성곱 층은 같은 크기 커널 크기를 통해 정보를 추출하는 반면, 선택적 커널 합성곱은 다양한 커널 크기를 갖는 브랜치들에서 정보를 추출하고 이를 분할 주의집중을 통해 적응적으로 조정하여 결합한다. 제안 모델의 성능 평가를 위해 안저영상 데이터인 DRIVE와 CHASE DB1 데이터셋을 사용하였으며 제안 모델은 두 데이터셋에 대하여 F1 점수 기준 82.91%, 81.71%의 성능을 보여 망막 혈관 분할에 효과적임을 확인하였다.

U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가 (Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN)

  • 유지윤;윤대웅
    • 지구물리와물리탐사
    • /
    • 제25권3호
    • /
    • pp.140-161
    • /
    • 2022
  • 탄성파 탐사 자료 획득 시 자료의 일부가 손실되는 문제가 발생할 수 있으며 이를 위해 자료 보간이 필수적으로 수행된다. 최근 기계학습 기반 탄성파 자료 보간법 연구가 활발히 진행되고 있으며, 특히 영상처리 분야에서 이미지 초해상화에 활용되고 있는 CNN (Convolutional Neural Network) 기반 알고리즘과 GAN (Generative Adversarial Network) 기반 알고리즘이 탄성파 탐사 자료 보간법으로도 활용되고 있다. 본 연구에서는 손실된 탄성파 탐사 자료를 높은 정확도로 복구하는 보간법을 찾기 위해 CNN 기반 알고리즘인 U-Net과 GAN 기반 알고리즘인 cWGAN (conditional Wasserstein Generative Adversarial Network)을 탄성파 탐사 자료 보간 모델로 사용하여 성능 평가 및 결과 비교를 진행하였다. 이때 예측 과정을 Case I과 Case II로 나누어 모델 학습 및 성능 평가를 진행하였다. Case I에서는 규칙적으로 50% 트레이스가 손실된 자료만을 사용하여 모델을 학습하였고, 생성된 모델을 규칙/불규칙 및 샘플링 비율의 조합으로 구성된 총 6가지 테스트 자료 세트에 적용하여 모델 성능을 평가하였다. Case II에서는 6가지 테스트 자료와 동일한 형식으로 샘플링된 자료를 이용하여 해당 자료별 모델을 생성하였고, 이를 Case I과 동일한 테스트 자료 세트에 적용하여 결과를 비교하였다. 결과적으로 cWGAN이 U-Net에 비해 높은 정확도의 예측 성능을 보였으며, 정량적 평가지수인 PSNR과 SSIM에서도 cWGAN이 높은 값이 나타나는 것을 확인하였다. 하지만 cWGAN의 경우 예측 결과에서 추가적인 잡음이 생성되었으며, 잡음을 제거하고 정확도를 개선하기 위해 앙상블 작업을 수행하였다. Case II에서 생성된 cWGAN 모델들을 이용하여 앙상블을 수행한 결과, 성공적으로 잡음이 제거되었으며 PSNR과 SSIM 또한 기존의 개별 모델 보다 향상된 결과를 나타내었다.

A three-stage deep-learning-based method for crack detection of high-resolution steel box girder image

  • Meng, Shiqiao;Gao, Zhiyuan;Zhou, Ying;He, Bin;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.29-39
    • /
    • 2022
  • Crack detection plays an important role in the maintenance and protection of steel box girder of bridges. However, since the cracks only occupy an extremely small region of the high-resolution images captured from actual conditions, the existing methods cannot deal with this kind of image effectively. To solve this problem, this paper proposed a novel three-stage method based on deep learning technology and morphology operations. The training set and test set used in this paper are composed of 360 images (4928 × 3264 pixels) in steel girder box. The first stage of the proposed model converted high-resolution images into sub-images by using patch-based method and located the region of cracks by CBAM ResNet-50 model. The Recall reaches 0.95 on the test set. The second stage of our method uses the Attention U-Net model to get the accurate geometric edges of cracks based on results in the first stage. The IoU of the segmentation model implemented in this stage attains 0.48. In the third stage of the model, we remove the wrong-predicted isolated points in the predicted results through dilate operation and outlier elimination algorithm. The IoU of test set ascends to 0.70 after this stage. Ablation experiments are conducted to optimize the parameters and further promote the accuracy of the proposed method. The result shows that: (1) the best patch size of sub-images is 1024 × 1024. (2) the CBAM ResNet-50 and the Attention U-Net achieved the best results in the first and the second stage, respectively. (3) Pre-training the model of the first two stages can improve the IoU by 2.9%. In general, our method is of great significance for crack detection.

형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지 (Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images)

  • 김휘송;김덕진;김준우
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.793-810
    • /
    • 2022
  • 실시간 범람 모니터링을 위해 인공위성 SAR영상을 활용하는 수체탐지에 대한 필요성이 대두되었다. 주야와 기상에 상관없이 주기적으로 촬영 가능한 인공위성 SAR 영상은 육지와 물의 영상학적 특징이 달라 수체탐지에 적합하나, 스페클 노이즈와 영상별 상이한 밝기 값 등의 한계를 내포하여 다양한 시기에 촬영된 영상에 일괄적으로 적용 가능한 수체탐지 알고리즘 개발이 쉽지 않다. 이를 위해 본 연구에서는 Convolutional Neural Networks (CNN)기반 모델인 U-Net 아키텍처에 레이어의 조합인 모듈을 추가하여 별도의 전처리 없이 수체탐지의 정확도 향상 방법을 제시하였다. 풀링 레이어의 조합을 활용하여 형태학적 연산처리 효과를 제공하는 Morphology Module과 전통적인 경계탐지 알고리즘의 가중치를 대입한 컨볼루션 레이어를 사용하여 경계 학습을 강화시키는 Edge-enhanced Module의 다양한 버전을 테스트하여, 최적의 모듈 구성을 도출하였다. 최적의 모듈 버전으로 판단된 min-pooling과 max-pooling이 연속으로 이어진 레이어와 min-pooling로 구성된 Morphology 모듈과 샤를(Scharr) 필터를 적용한 Edge-enhanced 모듈의 산출물을 U-Net 모델의 conv 9에 입력자료로 추가하였을 때, 정량적으로 9.81%의 F1-score 향상을 보여주었으며, 기존의 U-Net 모델이 탐지하지 못한 작은 수체와 경계선을 보다 세밀하게 탐지할 수 있는 성능을 정성적 평가를 통해 확인하였다.

Improvement of learning concrete crack detection model by weighted loss function

  • Sohn, Jung-Mo;Kim, Do-Soo;Hwang, Hye-Bin
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권10호
    • /
    • pp.15-22
    • /
    • 2020
  • 본 연구에서는 가중치 오차 함수를 적용하여, 미세한 콘크리트 균열을 감지하는 U-Net 모델을 만들 수 있도록 개선 방안을 제안한다. 콘크리트 균열은 안전을 위협하는 요소이기 때문에 그 상태를 주기적으로 파악하고 신속하게 초기 대응을 하는 것이 중요하다. 하지만 현재는 점검자가 직접 육안으로 검사하고 평가하는 외관 검사법이 주로 사용되고 있다. 이는 정확성뿐만 아니라 비용과 시간, 안전성 측면에서도 한계점을 가진다. 이에 콘크리트 구조물에 생성되는 미세한 균열을 신속하고 정밀하게 탐지할 수 있도록 딥러닝을 활용한 기술들이 연구되고 있다. 본 연구에서 U-Net을 활용한 균열 탐지를 시도한 결과, 미세한 균열을 탐지하지 못하는 것을 확인하였다. 이에 제시한 가중치 오차 함수를 적용하여 학습한 모델에 대해 성능을 검증한 결과, 정확도(Accuracy) 99% 이상, 조화평균(F1_Score) 89%에서 92%의 신뢰성 높은 수치를 도출해내었고, 미세한 균열을 정확하고 선명하게 탐지한 결과를 통해 학습 개선 방안의 성능을 검증하였다.

SpaceNet 건물 데이터셋과 Context-based ResU-Net을 이용한 건물 자동 추출 (Automatic Building Extraction Using SpaceNet Building Dataset and Context-based ResU-Net)

  • 유수홍;김철환;권영목;최원준;손홍규
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.685-694
    • /
    • 2022
  • 건물 정보는 다양한 도시 공간 분석에 활용되는 필수 정보 중 하나이기에 지속적인 모니터링이 필요하지만 현실적으로 어려움이 존재하고 있다. 이를 위해 광범위한 지역에 대해서도 지속적인 관찰이 가능한 위성영상으로부터 건물을 추출하기 위한 연구가 진행되고 있으며, 최근에는 딥러닝 기반의 시맨틱 세그멘테이션 기법들이 활용되고 있다. 본 연구에서는 SpaceNet의 건물 v2 무료 오픈 데이터를 이용하여 30 cm 급 Worldview-3 RGB 영상으로부터 건물을 자동으로 추출하기 위해, context-based ResU-Net의 일부 구조를 변경하여 학습을 진행하였다. 분류 정확도 평가 결과, f1-score가 2회차 SpaceNet 대회 수상작의 분류 정확도보다 높은 것으로 나타났다. 앞으로 지속적으로 Worldview-3 위성 영상을 확보할 수 있다면 본 연구의 성과를 활용하여 전세계 건물 자동 추출 모델을 제작하는 것도 가능할 것으로 판단된다.

Comparing U-Net convolutional network with mask R-CNN in Nuclei Segmentation

  • Zanaty, E.A.;Abdel-Aty, Mahmoud M.;ali, Khalid abdel-wahab
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.273-275
    • /
    • 2022
  • Deep Learning is used nowadays in Nuclei segmentation. While recent developments in theory and open-source software have made these tools easier to implement, expert knowledge is still required to choose the exemplary model architecture and training setup. We compare two popular segmentation frameworks, U-Net and Mask-RCNN, in the nuclei segmentation task and find that they have different strengths and failures. we compared both models aiming for the best nuclei segmentation performance. Experimental Results of Nuclei Medical Images Segmentation using U-NET algorithm Outperform Mask R-CNN Algorithm.