1 |
T. Laibacher, T. Weyde, and S. Jalali, "M2U-Net: Effective and efficient retinal vessel segmentation for resource-constrained environments," IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 115-124, Long Beach, CA, USA, June. 2019. DOI: https://doi.org/10.1109/cvprw.2019.00020
DOI
|
2 |
C. Guo, M. Szemenyei, Y. Yi, W. Zhou and H. Bian, "Residual Spatial Attention Network for Retinal Vessel Segmentation," In International Conference on Neural Information Processing, ICONIP 2020, pp. 509-519, Springer, Cham, Nov. 2020. DOI: https://doi.org/10.1007/978-3-030-63830-6_43
DOI
|
3 |
D. Marin, A. Aquino, M. E. Gegundez-Arias and J. M. Bravo, "A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features," in IEEE Transactions on Medical Imaging, Vol. 30, No. 1, pp. 146-158, Jan. 2011. DOI: https://doi.org/10.1109/TMI.2010.2064333
DOI
|
4 |
M. U. Akram, A. Atzaz, S. F. Aneeque and S. A. Khan, "Blood vessel enhancement and segmentation using wavelet transform," 2009 International Conference on Digital Image Processing. IEEE, pp. 34-38, Bangkok, Thailand, Aug. 2009. DOI: https://doi.org/10.1109/ICDIP.2009.70
DOI
|
5 |
G. Ghiasi, T. Y. Lin and Q. V. Le, "Selective Kernel Networks," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510-519, Long Beach, CA, USA, June. 2019. DOI: https://doi.org/10.1109/cvpr.2019.00060
DOI
|
6 |
X. Li, H. Chen, X. Qi, Q. Dou, C. Fu, and P. Heng, "H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes," IEEE Transactions on Medical Imaging, Vol. 37, No. 12, pp. 2663-2674, 2018. DOI: https://doi.org/10.1109/TMI.2018.2845918
DOI
|
7 |
J. Zhuang, "Laddernet: Multi-path networks based on u-net for medical image segmentation," arXiv preprint arXiv:1810.07810, 2018.
|
8 |
T. DeVries and G. W. Tayler, "Improved Regularization of Convolutional Neural Networks with Cutout," arXiv preprint arXiv:1708.04552, 2017.
|
9 |
L. Li, M. Verma, Y. Nakashima, H. Nagahara, R. Kawasaki, "Iternet: Retinal image segmentation utilizing structural redundancy in vessel networks," IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3656-3665, CO, USA, Mar. 2020. DOI: https://doi.org/10.1109/wacv45572.2020.9093621
DOI
|
10 |
Q. Jin, Z. Meng, T. D. Pham, Q. Chen, L. Wei, and R. Su, "DUNet: A deformable network for retinal vessel segmentation," Knowledge-Based Systems, Vol. 178, pp. 149-162, 2019. DOI: https://doi.org/10.1016/j.knosys.2019.04.025
DOI
|
11 |
K. He, X. Zhang, S. Ren and J. Jun, "Deep residual learning for image recognition," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, Las Vegas, NV, USA, Jun. 2016. DOI: https://doi.org/10.1109/cvpr.2016.90
DOI
|
12 |
X. Li, W. Wang, H. Xiaolin and J. Yang, "Dropblock: A regularization method for convolutional networks," In Neural Information Processing Systems, 2018.
|
13 |
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," arXiv preprint arXiv:1502.03167, 2015.
|
14 |
D. Maji, A. Santara, S. Ghosh, D. Sheet and P. Mitra, "Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images," 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3029-3032, Milan, Italy, Nov. 2015. DOI: https://doi.org/10.1109/EMBC.2015.7319030
DOI
|
15 |
D. Onkaew, R. Turior, B. Uyyanonvara and T. Kondo, "Automatic Extraction of Retinal Vessels Based on Gradient Orientation Analysis," IEEE Eighth International Joint Conference on Computer Science and Software Engineering(JCSSE), pp. 102-107, Nakhonpathom, Thailand, Jun. 2011. DOI: https://doi.org/10.1109/JCSSE.2011.5930102
DOI
|
16 |
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, Vol. 25, pp. 1097-1105, 2012. DOI: https://doi.org/10.1145/3065386
DOI
|
17 |
J. I. Orlando, E. Prokofyeva, and M. B. Blaschko, "A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images," IEEE transactions on Biomedical Engineering, Vol. 64, No. 1, pp. 16-27, Jan. 2017. DOI: https://doi.org/10.1109/TBME.2016.2535311
DOI
|
18 |
O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical image computing and computer-assisted intervention(MICCAI), Vol. 234-241, pp. 234-241, Springer, Cham, 2015. DOI: https://doi.org/10.1007/978-3-319-24574-4_28
DOI
|
19 |
S. Aslani and H. Sarnel, "A new supervised retinal vessel segmentation method based on robust hybrid features," Biomedical Signal Processing & Control, Vol. 30, pp. 1-12, Sep. 2016. DOI: https://doi.org/10.1016/j.bspc.2016.05.006
DOI
|
20 |
J. Long E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR), pp. 3431-3440, Boston, MA, USA, Mar. 2015. DOI: https://doi.org/10.1109/cvpr.2015.7298965
DOI
|
21 |
J. Son, G. Moon and Y. Kim, "Automatic Detection System of Underground Pipe Using 3D GPR Exploration Data and Deep Convolutional Neural Networks," Journal of the Korea Society of Computer and Information, Vol. 26, No. 2, pp. 47-55, Feb. 2021. DOI: https://doi.org/10.9708/jksci.2021.26.02.027
DOI
|
22 |
S. Kim, J. Sohn and D. Kim, "A method for concrete crack detection using U-Net based image inpainting technique," Journal of the Korea Society of Computer and Information, Vol. 25, No. 10, pp. 35-42, Oct. 2020. DOI: https://doi.org/10.9708/jksci.2020.25.10.035
DOI
|
23 |
Z. Zhang, Q. Liu and Y. Wang, "Road extraction by deep residual u-net," IEEE Geoscience and Remote Sensing Letters, Vol. 15. No. 5, pp. 749-753, Mar. 2018. DOI: https://doi.org/10.1109/LGRS.2018.2802944
DOI
|
24 |
M. Z. Alom, M. Hasan, C.Yakopcic, T. M. Taha and V. K. Asari, "Recurrent residual U-Net for medical image segmentation," Journal of Medical Imaging, Vol. 6, No. 1, pp. 1-16, Mar. 2019. DOI: https://doi.org/10.1117/1.jmi.6.1.014006
DOI
|