• Title/Summary/Keyword: Tyrosine kinases

Search Result 116, Processing Time 0.024 seconds

Reversal of Cisplatin Resistance by Epigallocatechin Gallate Is Mediated by Downregulation of Axl and Tyro 3 Expression in Human Lung Cancer Cells

  • Kim, Kyung-Chan;Lee, ChuHee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.61-66
    • /
    • 2014
  • Lung cancer is still the number one cause of death from cancer worldwide. The clinical effect of platinum-based chemotherapy for non-small cell lung cancer is constrained by the resistance to drug. To overcome chemo-resistance, various modified treatment including combination therapy has been used, but overall survival has not been improved yet. In this study, chemo-resistant lung cancer cells, A549/Cis and H460/Cis, were developed by long-term exposure of cells to cisplatin and the proliferative capability of these resistant cells was verified to be reduced. We found cytotoxic effect of epigallocatechin gallate (EGCG), a major catechin derived from green tea, on both the parental lung cancer cells, A549 and H460, and their cisplatin resistant cells, A549/Cis and H460/Cis. ELISA and Western blot analysis revealed that EGCG was able to increase interlukine-6 (IL-6) production per cell, whereas its downstream effector Signal transducers and activators of transcription 3 (STAT3) phosphorylation was not changed by EGCG, indicating that IL-6/STAT3 axis is not the critical signaling to be inhibited by EGCG. We next found that EGCG suppresses the expression of both Axl and Tyro 3 receptor tyrosine kinases at mRNA and protein level, explaining the cytotoxic effect of EGCG on lung cancer cells, especially, regardless of cisplatin resistance. Taken together, these data suggest that EGCG impedes proliferation of lung cancer cells including their chemo-resistant variants through downregulation of Axl and Tyro 3 expression.

Differentially Expressed Genes by Inhibition of C-terminal Src Kinase by siRNA in Human Vascular Smooth Muscle Cells and Their Association with Blood Pressure

  • Hong, Kyung-Won;Shin, Young-Bin;Kim, Koan-Hoi;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.102-113
    • /
    • 2011
  • C-terminal SRC kinase (CSK) is a ubiquitously expressed, cytosolic enzyme that phosphorylates and inactivates several SRC family protein tyrosine kinases. Recent genomewide association studies have implicated CSK in the regulation of blood pressure. The current study aim is to determine the blood pressure association of the genes regulated by CSK down-regulation. The CSK mRNA expression was downregulated in vascular smooth muscle cells using small interfering RNA (siRNA). CSK mRNA levels fell by 90% in cells that were treated with CSK siRNA; the RNA from these cells was examined by microarray using the Illumina HumanRef-8 v3 platform, which comprises 24,526 reference mRNA probes. On treatment with CSK siRNA, 19 genes were downregulated by more than 2-fold and 13 genes were upregulated by more than 2-fold. Three (CANX, SLC30A7, and HMOX1) of them revealed more than 3 fold differential expression. Interestingly, the HMOX1 SNPs were associated with diastolic blood pressure in the 7551 Koreans using Korea Association REsource data, and the result was supported by the other reports that HMOX1 linked to blood vessel maintenance. Among the remaining 29 differentially expressed genes, seven (SSBP1, CDH2, YWHAE, ME2, PFTK1, G3BP2, and TUFT1) revealed association with both systolic and diastolic blood pressures. The CDH2 gene was linked to blood pressures. Conclusively, we identified 32 differentially expressed genes which were regulated by CSK reduction, and two (HOMX1 and CDH2) of them might influence the blood pressure regulation through CSK pathway.

Linear and Conformational B Cell Epitope Prediction of the HER 2 ECD-Subdomain III by in silico Methods

  • Mahdavi, Manijeh;Mohabatkar, Hassan;Keyhanfar, Mehrnaz;Dehkordi, Abbas Jafarian;Rabbani, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3053-3059
    • /
    • 2012
  • Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family of receptor tyrosine kinases that plays important roles in all processes of cell development. Their overexpression is related to many cancers, including examples in the breast, ovaries and stomach. Anticancer therapies targeting the HER2 receptor have shown promise, and monoclonal antibodies against subdomains II and IV of the HER2 extra-cellular domain (ECD), Pertuzumab and Herceptin, are currently used in treatments for some types of breast cancers. Since anti HER2 antibodies targeting distinct epitopes have different biological effects on cancer cells; in this research linear and conformational B cell epitopes of HER2 ECD, subdomain III, were identified by bioinformatics analyses using a combination of linear B cell epitope prediction web servers such as ABCpred, BCPREDs, Bepired, Bcepred and Elliprro. Then, Discotope, CBtope and SUPERFICIAL software tools were employed for conformational B cell epitope prediction. In contrast to previously reported epitopes of HER2 ECD we predicted conformational B cell epitopes $P1_C$: 378-393 (PESFDGDPASNTAPLQ) and $P2_C$: 500-510 (PEDECVGEGLA) by the integrated strategy and P4: PESFDGD-X-TAPLQ; P5: PESFDGDP X TAPLQ; P6: ESFDGDP X NTAPLQP; P7: PESFDGDP-X-NTAPLQ; P8: ESFDG-XX-TAPLQPEQL and P9: ESFDGDP-X-NTAPLQP by SUPERFICIAL software. These epitopes could be further used as peptide antigens to actively immune mice for development of new monoclonal antibodies and peptide cancer vaccines that target different epitopes or structural domains of HER2 ECD.

Clinical Significance of SH2B1 Adaptor Protein Expression in Non-small Cell Lung Cancer

  • Zhang, Hang;Duan, Chao-Jun;Chen, Wei;Wang, Shao-Qiang;Zhang, Sheng-Kang;Dong, Shuo;Cheng, Yuan-Da;Zhang, Chun-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2355-2362
    • /
    • 2012
  • The SH2B1 adaptor protein is recruited to multiple ligand-activated receptor tyrosine kinases that play important role in the physiologic and pathologic features of many cancers. The purpose of this study was to assess SH2B1 expression and to explore its contribution to the non-small cell lung cancer (NSCLC). Methods: SH2B1 expression in 114 primary NSCLC tissue specimens was analyzed by immunohistochemistry and correlated with clinicopathological parameters and patients' outcome. Additionally, 15 paired NSCLC background tissues, 5 NSCLC cell lines and a normal HBE cell line were evaluated for SH2B1 expression by RT-PCR and immunoblotting, immunofluorescence being applied for the cell lines. Results: SH2B1 was found to be overexpressed in NSCLC tissues and NSCLC cell lines. More importantly, high SH2B1 expression was significantly associated with tumor grade, tumor size, clinical stage, lymph node metastasis, and recurrence respectively. Survival analysis demonstrated that patients with high SH2B1 expression had both poorer disease-free survival and overall survival than other patients. Multivariate Cox regression analysis revealed that SH2B1 overexpression was an independent prognostic factor for patients with NSCLC. Conclusions: Our findings suggest that the SH2B1 protein may contribute to the malignant progression of NSCLC and could offer a novel prognostic indicator for patients with NSCLC.

Role of Shc and Phosphoinositide 3-Kinase in Heregulin-Induced Mitogenic Signaling via ErbB3

  • Kim, Myong-Soo;Koland, John G.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.507-513
    • /
    • 2000
  • ErbB3/HER3 is a cell surface receptor which belongs to the ErbB/HER subfamily of receptor protein tyrosine kinases. When expressed in NIH/3T3 cells, ErbB3 can form heterodimeric coreceptor with endogenous ErbB2. Among known intracellular effectors of the ErbB2/ErbB3 are mitogen-activated protein kinase (MAPK) and phosphoinositide (PI) 3-kinase. In the present study, we studied relative contributions of above two distinct signaling pathways to the heregulin-induced mitogenic response via activated ErbB3. For this, clonal NIH-3T3 cell lines expressing wild-type ErbB3 and ErbB3 mutants were stimulated with $heregulin{\beta}_1$. While cyclin D1 level was markedly high and further increased by treatment of heregulin in cells expressing wild-type ErbB3, the elimination of either Shc binding or PI 3-kinase binding lowered both levels. This result was supported by the reduction of cyclin $D_1$ expression by preteatment with MAPK kinase inhibitor or PI 3-kinase inhibitor before stimulation with heregulin. In accordance with the cyclin $D_1$ expression, elimination of either Shc binding or PI 3-kinase binding reduced the heregulin-induced DNA synthesis and cell growth rate. Our results obtained by the comparison of wild-type and ErbB3 mutants indicate that the full induction of the cell cycle progression through $G_1/S$ phase by ErbB3 activation is dependent on both Shc/MAPK and PI 3-kinase signal transduction pathways.

  • PDF

Involvement of Cytosolic Phospholipase $A_2$ in Nerve Growth Factor-Mediated Neurite Outgrowth of PC12 Cells

  • Choi, Soon-Wook;Yu, Eun-Ah;Lee, Young-Seek;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.525-530
    • /
    • 2000
  • The nerve growth factor (NGF) induces neuronal differentiation and neurite outgrowth of PC12 cells, whereas epidermal growth factors (EGF) stimulate growth and proliferation of the cells. In spite of this difference, NGF-or EGF-treated PC12 cells share various properties in cellular-signaling pathways. These include the activation of the phosphoinositide (PI)-3 kinase, 70 kDa S6 kinase, and in the mitogen-activated protein (MAP) kinase pathway, following the binding of these growth factors to intrinsic receptor tyrosine kinases (RTKs). Therefore, many studies have been attempted to access the critical signaling events in determining the differentiation and proliferation of PC12 cells. In this study, we investigated the cytosolic phospholipase $A_2$ ($cPLA_2$) in neurite behavior in order to identify the differences of signaling pathways between the NGF-induced differentiation and the EGF-induced proliferation of PC12 cells. We have showed here that the $cPLA_2$ was translocated from cytosol to membrane only in NGF-treated cells. We also demonstrated that this translocation is associated with NGF-induced activation of phospholipase $C-{\gamma}(PLC-{\gamma})$, which elevates intracellular $Ca^{2+}$ concentration. These results reveal that the translocation of $cPLA_2$ may be a requisite event in the neuronal differentiation of PC12 cells. Various phospholipase inhibitors were used to confirm the importance of these enzymes in the differentiation of PC12 cells. Neomycin B, a PLC inhibitor, dramatically inhibited the neurite outgrowth, and two distinct $PLA_2$ inhibitors, 4-bromophenacyl bromide (BPB) and arachidonyltrifluoro-methyl ketone ($AACOCF_3$) also suppressed the neurite outgrowth of the cells, as well Taken together, these data indicated that $cPLA_2$ is involved in NGF-induced neuronal differentiation and neurite outgrowth of PC12 cells.

  • PDF

Multitarget effects of Korean Red Ginseng in animal model of Parkinson's disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity

  • Choi, Jong Hee;Jang, Minhee;Nah, Seung-Yeol;Oh, Seikwan;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.379-388
    • /
    • 2018
  • Background: Ginsenosides are the main ingredients of Korean Red Ginseng. They have extensively been studied for their beneficial value in neurodegenerative diseases such as Parkinson's disease (PD). However, the multitarget effects of Korean Red Ginseng extract (KRGE) with various components are unclear. Methods: We investigated the multitarget activities of KRGE on neurological dysfunction and neurotoxicity in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. KRGE (37.5 mg/ kg/day, 75 mg/kg/day, or 150 mg/kg/day, per os (p.o.)) was given daily before or after MPTP intoxication. Results: Pretreatment with 150 mg/kg/day KRGE produced the greatest positive effect on motor dysfunction as assessed using rotarod, pole, and nesting tests, and on the survival rate. KRGE displayed a wide therapeutic time window. These effects were related to reductions in the loss of tyrosine hydroxylase-immunoreactive dopaminergic neurons, apoptosis, microglial activation, and activation of inflammatory factors in the substantia nigra pars compacta and/or striatum after MPTP intoxication. In addition, pretreatment with KRGE activated the nuclear factor erythroid 2-related factor 2 pathways and inhibited phosphorylation of the mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways, as well as blocked the alteration of blood-brain barrier integrity. Conclusion: These results suggest that KRGE may effectively reduce MPTP-induced neurotoxicity with a wide therapeutic time window through multitarget effects including antiapoptosis, antiinflammation, antioxidant, and maintenance of blood-brain barrier integrity. KRGE has potential as a multitarget drug or functional food for safe preventive and therapeutic strategies for PD.

Deoxypodophyllotoxin Inhibits Cell Growth and Induces Apoptosis by Blocking EGFR and MET in Gefitinib-Resistant Non-Small Cell Lung Cancer

  • Kim, Han Sol;Oh, Ha-Na;Kwak, Ah-Won;Kim, Eunae;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • As one of the major types of lung cancer, non-small cell lung cancer (NSCLC) accounts for the majority of cancer-related deaths worldwide. Treatments for NSCLC includes surgery, chemotherapy, and targeted therapy. Among the targeted therapies, resistance to inhibitors of the epidermal growth factor receptor (EGFR) is common and remains a problem to be solved. MET (hepatocyte growth factor receptor) amplification is one of the major causes of EGFR-tyrosine kinase inhibitor (TKI) resistance. Therefore, there exists a need to find new and more efficacious therapies. Deoxypodophyllotoxin (DPT) extracted from Anthriscus sylvestris roots exhibits various pharmacological activities including anti-inflammation and anti-cancer effects. In this study we sought to determine the anti-cancer effects of DPT on HCC827GR cells, which are resistant to gefitinib (EGFR-TKI) due to regulation of EGFR and MET and their related signaling pathways. To identify the direct binding of DPT to EGFR and MET, we performed pull-down, ATP-binding, and kinase assays. DPT exhibited competitive binding with ATP against the network kinases EGFR and MET and reduced their activities. Also, DPT suppressed the expression of p-EGFR and p-MET as well as their downstreat proteins p-ErbB3, p-AKT, and p-ERK. The treatment of HCC827GR cells with DPT induced high ROS generation that led to endoplasmic-reticulum stress. Accordingly, loss of mitochondrial membrane potential and apoptosis by multi-caspase activation were observed. In conclusion, these results demonstrate the apoptotic effects of DPT on HCC827GR cells and signify the potential of DPT to serve as an adjuvant anti-cancer drug by simultaneously inhibiting EGFR and MET.

7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

  • Ko, Yong-Hyun;Kim, Seon-Kyung;Kwon, Seung-Hwan;Seo, Jee-Yeon;Lee, Bo-Ram;Kim, Young-Jung;Hur, Kwang-Hyun;Kim, Sun Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.363-372
    • /
    • 2019
  • Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta ($GSK-3{\beta}$) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/$GSK-3{\beta}$ pathways.

AT9283, 1-Cyclopropyl-3-(3-(5-(Morpholinomethyl)-1H-Benzo[d] Imidazole-2-yl)-1H-Pyrazol-4-yl) Urea, Inhibits Syk to Suppress Mast Cell-Mediated Allergic Response

  • Kim, Su Jeong;Choi, Min Yeong;Min, Keun Young;Jo, Min Geun;Kim, Jie Min;Kim, Hyung Sik;Kim, Young Mi
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.520-528
    • /
    • 2022
  • Mast cells are an effector cell that plays a pivotal role in type I hypersensitive immune responses. Mast cells exist in connective tissues, such as skin and mucosal tissue, and contain granules which contain bioactive substances such as histamine and heparin in cells. The granules of mast cells are secreted by antigen stimulation to cause the type I allergic hypersensitivity. In addition, stimulated by antigen, mast cells synthesize and secrete various eicosanoids and cytokines. While AT9283 is known to have anticancer effects, the therapeutic effect of AT9283 on allergic disorders is completely unknown. In this study, it was found that AT9283 reversibly inhibited antigen-IgE binding-induced degranulation in mast cells (IC50, approx. 0.58 μM) and suppressed the secretion of the inflammatory cytokines IL-4 (IC50, approx. 0.09 μM) and TNF-α (IC50, approx. 0.19 μM). For a mechanism of mast cell inhibition, while not inhibiting Syk phosphorylation, AT9283 suppressed the activation of LAT, a downstream substrate protein of Syk, in a dose-dependent manner. As expected, AT9283 also inhibited the activation of PLCγ1 and Akt, downstream signaling molecules of Syk/LAT, and MAP kinases such as JNK, Erk1/2, and P38. In an in vitro protein tyrosine kinase assay, AT9283 directly inhibited Syk activity. Next, AT9283 dose-dependently inhibited passive cutaneous anaphylaxis (PCA), an IgE-mediated allergic acute response, in mice (ED50, approx. 34 mg/kg, p.o.). These findings suggest that AT9283 has potential to use as a new drug for alleviating the symptoms of IgE-mediated allergic disorders.