• Title/Summary/Keyword: Tyrosinase-related protein

Search Result 188, Processing Time 0.029 seconds

Antioxidant and Whitening Effects of Sorbus commixta HEDL Cortex Extract (정공피 추출물의 항산화 활성 및 미백효과에 관한 연구)

  • Kim, Tae-Hyuk;You, Jin-Kyoun;Kim, Jeong-Mi;Baek, Jong-Mi;Kim, Hyun-Sook;Park, Jeong-Hae;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1418-1424
    • /
    • 2010
  • This study was performed to assess the antioxidant activities and whitening effects of Sorbus commixta HEDL cortex on melanin synthesis. The whitening effects of Sorbus commixta HEDL cortex water extracts were examined by in vitro mushroom tyrosinase assay and B16BL6 melanoma cells. We assessed inhibitory effects of Sorbus commixta HEDL cortex water extracts on expression of melanogenic enzyme proteins including tyrosinase, tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-2) in B16BL6 cells. Inhibitory effects of Sorbus commixta HEDL cortex onto free radical generation were determined by measuring DPPH and hydroxyl radical scavenging activities. Our results indicated that Sorbus commixta HEDL cortex water extracts effectively inhibited free radical generation. In DPPH radical scavenging activity, Sorbus commixta HEDL cortex water extracts had a potent anti-oxidant activity in a dose-dependent manner. They significantly inhibited tyrosinase activity in vitro and in B16BL6 melanoma cells. Also, Sorbus commixta HEDL cortex suppressed the expression of tyrosinase, TRP-1 and TRP-2 in B16BL6 melanoma cells. These results show that Sorbus commixta HEDL cortex inhibited melanin production on the melanogenesis. The underlying mechanism of Sorbus commixta HEDL cortex on whitening activity may be due to the inhibition of tyrosinase activity and tyrosinase, TRP-1, TRP-2 expression. We suggest that Sorbus commixta HEDL cortex may be contain new natural active ingredients for antioxidant and whitening cosmetics.

Linarin enhances melanogenesis in B16F10 cells via MAPK and PI3K/AKT signaling pathways

  • Oh, So-Yeon;Kang, Jin Kyu;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.447-451
    • /
    • 2021
  • In this study, we discovered for the first time that linarin, a flavonoid compound, enhances melanin biosynthesis in B16F10 cells, and subsequently elucidated the underlying mechanism of linarin-induced melanogenesis. Linarin showed no cytotoxicity at a concentration of 42 μM and significantly increased intracellular tyrosinase activity and melanin content in B16F10 cells. Mechanistic analysis showed that linarin increased the expression of tyrosinase, tyrosinase-related protein 1 (TRP-1), and microphthalmia-associated transcription factor (MITF) that are related to melanogenesis. Moreover, linarin decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT). Finally, we evaluated the effect of the structure-activity relationship of linarin and its aglycone on melanogenesis. The results indicated that linarin enhances the expression of melanogenic proteins by activating MITF expression via the modulation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), and protein kinase B signaling pathways in B16F10 cells, thereby enhancing melanogenesis.

Study of Skin Depigmenting Mechanism of the Ethanol Extract of Fagopyrum esculentum (교맥 에탄올 추출물의 피부 미백기전 연구)

  • No, Seong-Taek;Kim, Dae-Sung;Lee, Seong-Jin;Park, Dae-Jung;Lee, Jang-Cheon;Lim, Kyu-Sang;Woo, Won-Hong;Mun, Yeun-Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1243-1249
    • /
    • 2007
  • The aim of this study was to investigate the effect of ethanol extract of Fagopyrum esculentum on the melanogenesis. To determine whether ethanol extract of Fagopyrum esculentum suppress melanin synthesis in cellular level, B16F10 melanoma cells were cultured in the presence of different concentrations of Fagopyrum esculentum ethanol extract. In the present study, we examined the effects of Fagopyrum esculentum ethanol extract on cell proliferation, melanin contents, tyrosinase activity, expression of melanogenic enzyme proteins including tyrosinase, tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-2). Cell proliferation was slightly increased by treatment with ethanol extract of Fagopyrum esculentum $(25-200 {\mu}g/m{\ell}).$ The ethanol extract of Fagopyrum esculentum effectively suppressed melanin contents at a dose of $100 {\mu}g/m{\ell}).$ It was observed that the color of cell pellets was totally whitened compared with the control. The ethanol extract of Fagopyrum esculentum inhibited tyrosinase activity, regulate melanin biosynthesis as the key enzyme in melanogenesis. Using western blot analysis, the ethanol extract of Fagopyrum esculentum dose-dependently decreased tyrosinase and TRP-1 protein levels, and tyrosinase and TRP-1 were detected in similar manner. ${\alpha}-MSH$ leads to a stimulation of melanin synthesis through increase of tyrosinase activity, melanin contents and cytoplasmic dendricity. In this study, ethanol extract of Fagopyrum esculentum down-regulated the ${\alpha}-MSH$-induced tyrosinase activity, melanin contents and cytoplasmic dendricity. Regarding protein levels of the melanogenic enzymes, the amounts of tyrosinase and TRP-1 was increased after incubation with a-MSH. The treatment of ethanol extract of Fagopyrum esculentum decreased the ${\alpha}-MSH$-induced expression levels of tyrosinase and TRP-1. These results suggest that the ethanol extract of Fagopyrum esculentum exerts its depigmenting effects through the suppression of tyrosinase, TRP-1 and cytoplasmic dendricity. And it may be a potent depigmetation agent in hyperpigmentation condition.

Inhibitory Efficacy of Smilax china L. on MITF, TRP-1, TRP-2, Tyrosinase Protein and mRNA Expression in Melanoma Cell (B16F10) (멜라노마 세포(B16F10)에서 청미래 덩굴 뿌리 추출물의 MITF, TRP-1, TRP-2, tyrosinase 단백질 및 mRNA 발현 억제 효과)

  • Lee, Soo-Yeon;Yoo, Dan-Hee;Joo, Da-Hye;Jo, Hui-Seon;Lee, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study was to assess the whitening effects of an extract from Smilax china L., which is a vine shrub belonging to the lily family. With regard to the whitening effects, 70% ethanol and water extracts from Smilax china L. showed more than 77.6% and 40.2% tyrosinase inhibition at a concentration of $1,000{\mu}l$. Furthermore, the 70% ethanol extract showed cytotoxicity of 89% at a concentration of $100{\mu}g/ml$ in melanoma cells. Western blot showed that the inhibitory effect of the 70% ethanol extract on MITF, TRP-1, TRP-2, and tyrosinase protein expression decreased by 89.9%, 46.2%, 57.6%, and 55.8%, respectively, at a concentration of $50{\mu}g/ml$. Moreover, reverse transcription-PCR showed that the inhibitory effect of the 70% ethanol extract on MITF, TRP-1, TRP-2, and tyrosinase mRNA expression decreased by 78.5%, 58.0%, 78.8%, and 70.8%, respectively, at the same concentration of $50{\mu}g/ml$ concentration. Further, realtime PCR showed that the 70% ethanol extract-induced decrease in MITF, TRP-1, TRP-2, and tyrosinase quantitative mRNA expression rate was concentration-dependent. The findings suggest that the extract from Smilax china L. has great potential as a cosmetic ingredient with whitening effects.

Artemisia capillaris Thunb. inhibits melanin synthesis activity via ERK-dependent MITF pathway in B16/F10 melanoma cells

  • Saba, Evelyn;Oh, Mi Ju;Lee, Yuan Yee;Kwak, Dongmi;Kim, Suk;Rhee, Man Hee
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Genus Artemisia occurs as a hardy plant and has a wide range of culinary and medicinal features. In this study, we aimed to describe the melanin inhibitory activity of one Artemisia species, i.e., Artemisia capillaris Thunb. Ethanol extracts of fermented Artemisia capillaris (Art.EtOH.FT) and non-fermented Artemisia capillaris (Art.EtOH.CT) were tested for their ability to inhibit tyrosinase activity and melanin pigmentation. Both extracts showed dose-dependent inhibition against ${\alpha}$-melanocyte stimulating hormone-stimulated melanin formation and tyrosinase activity, without cytotoxicity. At $100{\mu}g/mL$, both extracts showed greater inhibition than kojic acid, the positive control. Protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) at the transcriptional level were determined by using real-time and semi-quantitative polymerase chain reaction. To complete the mechanistic study, presences of upstream elements of MITF, the phosphorylated-extracellular signal-regulated kinase (p-ERK), and phosphorylated-mitogen-activated protein kinase kinase (p-MEK) were confirmed by using western blot analysis. Expressions of p-TYR, p-TRP-1 and p-TRP-2, downstream factors for p-ERK and p-MITF, were translationally inhibited by both extracts. Art.EtOH.FT induced more potent effects than Art.EtOH.CT, especially signal transduction effects. In summary, Artemisia capillaris extracts appear to act as potent hypopigmentation agents.

A Study on the Depigmenting Effect of Carthamus tinctorius Seed, Cyperus rotundus and Schizonepeta tenuifolia Extracts (홍화자, 향부자, 형개 추출물의 미백효과에 관한 연구)

  • Hwang, Eun-Young;Kim, Dong-Hee;Hwang, Jo-Young;Kim, Hui-Jeong;Park, Tae-Soon;Lee, In-Sun;Son, Jun-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.76-81
    • /
    • 2012
  • The objective of the present study was to evaluate the skin depigmentation effect of the extracts of three herbs, Carthamus tinctorius seed, Cyperus rotundus and Schizonepeta tenuifolia. Their effects on tyrosinase and melanin synthesis inhibitory action were assessed. We found that the C. tinctorius seed ethanol extracts reduced the tyrosinase activity and melanin formation of B16F10 melanoma cells. The C. tinctorius seed suppressed the expression in microphthalmia associated transcription factor (MITF), tyrosinase, tyrosinase related protein 1 (TRP-1), and tyrosinase related protein 2 (TRP-2) in B16F10 melanoma cells. These results show that C. tinctorius seed inhibited melanogenesis on the B16F10 melanoma cell. The underlying mechanism of C. tinctorius seed whitening activity may be the inhibition of tyrisinase, MITF, tyrosinase, TRP-1, and TRP-2 expression. The results suggested that C. tinctorius seed has considerable potential as a natural functional ingredient with a depigmentation effect.

Anti-melanogenesis and Anti-wrinkle Properties of Korean Native Dendrobium speciosum Ethanol Extract (Dendrobium speciosum 에탄올 추출물의 melanin 생성 억제 효능 및 주름개선 효과)

  • Sim, Mi-Ok;Lee, Hyo-Eun;Jang, Ji-Hun;Jung, Ho-Kyung;Kim, Tae-Muk;Kim, Min-Suk;Jung, Won Seok
    • Korean Journal of Plant Resources
    • /
    • v.29 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • Melanin is produced by melanocytes of the melanoepidermic unit and other cell types. These cells secrete and distribute the melanin pigment, which provides protection from ultraviolet radiation. In this study, the inhibitory activity against tyrosinase and melanin biosynthesis in B16F10 melanoma cells and anti-wrinkling effects on human dermal fibroblasts of Dendrobium speciosum ethanol extract were investigated. The Dendrobium speciosum extract inhibited melanin biosynthesis and tyrosinase activity in a dose-dependent manner in comparison with an untreated control group. Treatment with the Dendrobium speciosum extract suppressed α-MSH-stimulated melanogenesis in B16F10 cells and the dendrite outgrowth of melanocyte/melanoma cells. The α-MSH-induced mRNA expression of tyrosinase-related protein-1 (TRP-1), tyrosinase-related protein-2 (TRP-2) and microphthalmia-associated transcription factor (MITF) was significantly attenuated in a concentration-dependent manner by Dendrobium speciosum treatment. In addition, Dendrobium speciosum treatment increased production of type I procollagen synthesis in human dermal fibroblasts. Dendrobium speciosum ethanol extract exhibited a potent inhibitory effect on melanin biosynthesis, tyrosinase activity and increased procollagen synthesis. These results indicate that Dendrobium speciosum shows promise as an ingredient in cosmeceutical products due to its whitening and anti-wrinkle effects.

Effect of Rhynchosia Nulubilis Ethanolic Extract on DOPA Oxidation and Melanin Synthesis (서목태 주정 추출물이 DOPA 산화와 멜라닌 합성에 미치는 영향)

  • Kim, JaeRyeon;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.331-338
    • /
    • 2018
  • Melanin is a polymer substance that plays an important role in the determination of hair growth and skin color in vivo. However, melanin, which is over-produced by reactive oxygen species, is known to cause stains, freckles, and hypercholesterolemia, which are associated with aging. Previous studies have shown that polyphosphate, one of the components of Rhynchosia Nulubilis, inhibits skin aging induced by ultraviolet rays. The aim of this study is to investigate the direct effect of Rhynchosia Nulubilis ethanolic extract (RNEE) on melanin synthesis. In this study, RNEE showed no antioxidative effects on scavenging activity of DPPH radical in addition to reducing power. The cytotoxicity of RNEE was increased in a dose-dependent manner in an MTT assay. In addition, RNEE increased tyrosinase activity and melanin synthesis in DOPA-oxidation experiments. RNEE did not promote the conversion L-DOPA into melanin in live cells, but melanin production was promoted in the RNEE-treated group after H2O2 pretreatment compared to the control group in which melanin production was reduced by treatment with H2O2. In addition, RNEE increased the expression level of tyrosinase related protein-2 (TRP-2) and increased the expression level of tyrosinase related protein-1 (TRP-1) at a concentration of $16{\mu}g/ml$. In particular, it was found that RNEE increased the expression level of SOD-3, by which superoxide anion is converted to hydrogen peroxide, higher than the control and ${\alpha}$-MSH used as a positive control at a concentration of more than $16{\mu}g/ml$. The results suggest that RNEE can induce melanogenesis related to black hair.

Inhibitory Effects of Water-soluble Extracts of Barley, Malt, and Germinated Barley on Melanogenesis in Melan-a Cells

  • Lee, Hyun Myung;Lee, Sung Ok;Moon, Eunjung;Do, Moon Ho;Kim, Sun Yeou
    • Natural Product Sciences
    • /
    • v.20 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • In recent times, the demand for edible medication for the treatment of hyperpigmentation has increased significantly. Therefore, the discovery of a stable, safe and inexpansive antimelanogenic component from natural substances, such as grains, is of particular interest. The levels and activities of some metabolites and/or enzymes can be increased. In the present study, we investigated the antimelanogenic effects of water-soluble extracts from barley (BE), malt (ME) and germinated barley (GBE) in melan-a cells. The inhibitory effects of ME and GBE on melanin production were significantly greater than that of BE. Interestingly, the content of ferulic acid, the proposed active component of barley, was also higher in ME and GBE than in BE by HPLC analysis. Western blot analysis of the expression of melanogenic enzymes in melan-a cells treated with BE, ME or GBE indicated the expression of both tyrosinase and tyrosinase-related protein 2 (TRP-2) significantly decreased after treatment with BE, ME or GBE. These results suggest that besides BE, ME and GBE also inhibit melanin production most likely through suppression of tyrosinase and TRP-2 expression. ME and GBE were more efficacious at inhibiting melanin production than BE was and may also represent potential skin-whitening agents.

Melanogenesis Inhibition by Forsythiae Fructus Extract in Human Melanoma Cells (인체 멜라닌세포주에서 연교(連翹) 추출물의 멜라닌생성 억제기전 연구)

  • Jo, Mi-Gyeong;Mun, Yeun-Ja;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.371-376
    • /
    • 2008
  • In this study, we have investigated the hypo-pigmentary mechanism of methanol extract of Forsythiae Fructus in human melanocyte cell line, HM3KO. Treatment of HM3KO cells with Forsythiae Fructus extract markedly inhibited melanin biosynthesis in a dose-dependent manner. Decreased melanin contents occurred through the decrease of tyrosinase protein and activity. The mRNA levels of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also reduced by Forsythiae Fructus extract. Moreover, the level of intracellular cyclic AMP (cAMP) was significantly decreased by treatment of Forsythiae Fructus extract. These results suggest that Forsythiae Fructus reduces melanin synthesis by down regulation of tyrosinase mRNA transcription, and this is closely related to the cAMP-dependent pathway.