• Title/Summary/Keyword: Typhoon wave

Search Result 179, Processing Time 0.02 seconds

The Change of Beach Sediment Composition and Geography by Typhoon (Naa Beach, East Sea) (태풍에 의한 해빈 퇴적물 조성 및 지형 변화(동해, 나아해빈))

  • Lee, Yeon-Gyu;Shin, Hyeon-Ok;Lee, Jeong-Sup;Park, Il-Heum;Choi, Jeong-Min
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.122-133
    • /
    • 2005
  • The change of surface sediment composition, shoreline and transection of geography were studied to investigate the Typhoon(Maemi) effect in Naa Beach located in the south area of East sea. In the backshore the volume of gravel is do creased, and increased in the volume of sand. The erosion in the sediment occurred to 4 m in the thickness and effected to 10 m in depth. And the coastline retreated to 12 m after typhoon. During typhoon conditions, higher amplitude waves deepen the wave base, causing much of the lower beach face and the offshore. The upper beach face is extensively eroded during typhoon and sand sediment is redeposited.

  • PDF

Development of Tools for calculating Forecast Sensitivities to the Initial Condition in the Korea Meteorological Administration (KMA) Unified Model (UM) (통합모델의 초기 자료에 대한 예측 민감도 산출 도구 개발)

  • Kim, Sung-Min;Kim, Hyun Mee;Joo, Sang-Won;Shin, Hyun-Cheol;Won, DukJin
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.163-172
    • /
    • 2011
  • Numerical forecasting depends on the initial condition error strongly because numerical model is a chaotic system. To calculate the sensitivity of some forecast aspects to the initial condition in the Korea Meteorological Administration (KMA) Unified Model (UM) which is originated from United Kingdom (UK) Meteorological Office (MO), an algorithm to calculate adjoint sensitivities is developed by modifying the adjoint perturbation forecast model in the KMA UM. Then the new algorithm is used to calculate adjoint sensitivity distributions for typhoon DIANMU (201004). Major initial adjoint sensitivities calculated for the 48 h forecast error are located horizontally in the rear right quadrant relative to the typhoon motion, which is related with the inflow regions of the environmental flow into the typhoon, similar to the sensitive structures in the previous studies. Because of the upward wave energy propagation, the major sensitivities at the initial time located in the low to mid- troposphere propagate upward to the upper troposphere where the maximum of the forecast error is located. The kinetic energy is dominant for both the initial adjoint sensitivity and forecast error of the typhoon DIANMU. The horizontal and vertical energy distributions of the adjoint sensitivity for the typhoon DIANMU are consistent with those for other typhoons using other models, indicating that the tools for calculating the adjoint sensitivity in the KMA UM is credible.

Beach Deformation Caused by Typhoon Chaba in 2016 Along the Manseongri Coast Related Coastal Improvement Project (연안정비사업이 수행된 만성리 해수욕장에서 2016년 태풍 차바에 의한 해빈변화)

  • Park, Il Heum;Park, Wan-Gyu;Jeong, Seung Myong;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.710-718
    • /
    • 2017
  • After Typhoon Chaba (No.18, 2016) collided with Manseongri Beach, a coastal improvement project was carried out since strong external forces such as waves, storm surges and wave-induced currents were observed to cause beach deformation. The shoreline, beach area and beach volume were periodically surveyed. On the basis of this field data, the beach deformation that occurred at Manseongri Beach has been formally described. Over three months after beach nourishment work began, the beaches were gradually stabilized in terms of natural external forces. However, this stabilization was interrupted by Typhoon Chaba. After two months of typhoon weather, the beach returned to a stable state and no changes were observed until one year after the beach recovery work. Just after the typhoon hit, the shoreline receded from the northern side, where no reduction of external forces occurred, while the rear beach area submerged by breakwater advanced. Also, the beach volume decreased by $3,395m^3$ after the typhoon, due to erosion that occurred on the northern beach, with deposition taking place on the southern backshore area. Therefore, it has been concluded that the coastal improvement project undertaken at Manseongri Beach has significantly contributed to conservation in areas of wave-dominant sediment transport.

Characteristics of Storm Waves at Gangneung port Based on the Wave Hindcasting (파랑 후측 모의 실험 기반 강릉항 폭풍파랑 분석)

  • Ahn, Kyungmo;Hwang, Soon-mi;Chun, Hwusub
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.375-382
    • /
    • 2016
  • In the present study, the wave hindcasting has been performed, and then the characteristics of storm waves at Gangnueng port was investigated, in which the high waves are observed. Comparing the numerical results with the wave measurements at Gangneung port, Niigata, and Hamada, there were good agreements between them. In particular, the Pearson correlation coefficients of significant wave heights and peak periods at Gangneung port were 0.92 and 0.72, respectively. Then the extreme wave analysis on the significant wave heights was carried out for the estimation of the frequency of storm waves. In this analysis, the storm waves over the threshold were fitted to GPD(Generalized Pareto Distribution). According to this analysis, the return period of the storm wave on February, 24, 2008, one of the large storm waves at Gangneung port, was 8.2 months. Among the computed significant wave heights larger than one-year wave, 58.3% of them were resulted from the storm, while the others were from the typhoon. Additionally, the regression analysis on the waves larger than one-month wave has been conducted, and then the relationship between the computed significant wave heights and the significant wave period, $T_{1/3}=7H_s^{0.25}$ was obtained.

Analysis of Hydraulic Characteristic in Surf Zone using the SWASH Model during Typhoon NAKRI(1412) in Haeundae Beach (SWASH 모형을 이용한 태풍 나크리(NAKRI)에 의한 해운대 해수욕장의 쇄파대 수리특성 해석)

  • Lee, Jong-Sup;Park, Myeong-Won;Kang, Min-Ho;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2015
  • A hydraulic characteristics in the surf zone such as wave breaking points, wave set-down, wave set-up, wave-induced currents and run-up heights are studied using the SWASH model during Typhoon NAKRI(1412) in Haeundae Beach. Incident wave conditions is obtained from one-hourly observed wave data by KHOA and irregular wave by JONSWAP spectrum is given as an open boundary condition in the model. A Wave-induced current patterns by the SWASH model is compared with the observed currents and sediment flux patterns in that areas, the calculated maximum wave run-up heights in the model is compared with the video monitoring data, the empirical formula by Stockdon et al. and Mase. A dominant longshore currents toward the east of the beach appears due to the effect of incident wave direction and the geographical features and some rip currents occurs at the central part of the beach. The maximum wave run-up height(1.15 m) by the SWASH model shows a similar pattern with the video monitoring data(1.26 m) and the magnitude shows a similar result(1.33m) by Stockdon et al.

On Statistical Properties of the Extreme Waves in Hong-do Sea Area During Typhoons (홍도 해역에서 태풍 중 극한파의 통계적 특성에 대한 연구)

  • Ryu Hwanajin;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • In this paper, The statistical properties of ocean waves in the sea area of Hong-do, Korea are examined based on 1998-2002's wave data from a directional wave buoy. Wave data aquisition rate, mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated. Large amplitude wave characteristics during the typhoon Prapiroon in 2000, Rusa in 2002 are also examined.

  • PDF

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

The Response of Sea Levels to Typhoons in the Japan Sea -Part I. The Response on the North Japanese Coast- (동해연안역 해수면변동에 미치는 태풍의 영향 -I. 일본 북부연안에서의 해수면변동-)

  • HONG Chol-Hoon;YOON Jong-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.567-579
    • /
    • 1993
  • The response of sea levels to a typhoon in the north Japanese coast in the Japan Sea is investigated by using hourly ses level data($1966{\sim}1986$) and a numerical shallow water model with high resolution($5'{\times}5'$). The observed sea level analysis shows (1) progressive waves exist between Simonoseki(SS) and Maizuru(MZ) with the mean phase speed of about 4 m/s during the passage of the typhoon, (2) the phase speed between Sasebo(SB) and HK(Hakata) is slower(about 1.7 m/s), and (3) the maximum sea level at HK is achieved about 0.5 day later than that of SS. In many aspects, the numerical model results correspond well to the above observed features. In the model the progressive waves are identified as a topographic wave with the phase speed of about 4 m/s. Before the typhoon passes through the Korea Strait/ the Tsushima Strait, the wave propagations along the Japanese coast are significantly influenced by the southwestward coastal jet induced by the wind stress parallel to the coast. The waves start to propagate northeastward along the coast when the coastal jet is weakened.

  • PDF

Constructing the integrated information system for the coast disaster area management using 3D web GIS technology

  • Jo Myung-Hee;Shin Dong-Ho;Pak Hyeon-Cheol;Hae Young-Jin;Kim Hyoung-Sub;Kim Jin-Sub
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.318-321
    • /
    • 2004
  • The damage scale and damage area in the coast have been increased dramatically because of calamities such as typhoon. tidal wave. flood and storm. Especially. 409 cases. which reach to about $40.9\%$ of natural disasters of 1,000 cases for the recent 15 years have happened on coast area. More than $40\%$ of natural disasters also occurred every year is happening in coastland. Therefore, there is a great need to construct all related GIS database such as atmospheric phenomena (typhoon. tidal wave, flood and storm). harbor facility, harbor traffic and ebb and flow. Furthermore. the certain system should be developed and integrated with NDMS (National Disaster Management System) by using 3D web GIS technology. In this study. the coast disaster area management system was designed and developed by using 3D web GIS technique so that the coast disaster area could be monitored and managed in real time and in visual. Finally. the future disaster in coast area could be predicted scientifically.

  • PDF

A Study on the Application of Coastal Disaster Prevention Considering Climate Change (기후변화를 고려한 연안지역 재해예방기법 적용방안 연구)

  • Lee, Sung Hyun;Kim, Bo Ram;Im, Jun Hyeok;Oh, Kuk Ryul;Sim, Ou Bae
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.369-376
    • /
    • 2018
  • Korea is surrounded by the West Sea, the South Sea, and the East Sea. There are various points at which large and small rivers flow into the sea, and areas where these rivers meet the coast are vulnerable to disasters. Thus, it is necessary to study disaster prevention techniques based on coastal characteristics and the pattern of disasters. In this study, we analyzed the risk factors of disaster districts analyzed in comprehensive plans for the reduction of damage to coastal cities from storms and floods. As a result of standardization, four factors (tide level, intensive rainfall & typhoon, wave, and tsunami) were identified. Intensive rainfall & typhoon occurred along the West Sea, the South Sea, and the East Sea coast. Factors that should be considered to influence disasters are tide level for the West Sea, tsunami and tide level for the South Sea, and wave in the East Sea. In addition, disaster prevention techniques to address these factors are presented, focusing on domestic and overseas cases.