• Title/Summary/Keyword: Type-I muscle

Search Result 255, Processing Time 0.031 seconds

A Histochemical Study of the Masseter Muscle Fibers of White Rat with Unilateral Edentulous Jaw (편측 무치악이 백서 교근 근섭유에 미치는 영향에 관한 조직화학적 연구)

  • Hong-Ryeol Ryu;Sung-Woo Lee
    • Journal of Oral Medicine and Pain
    • /
    • v.13 no.1
    • /
    • pp.61-69
    • /
    • 1988
  • The study of the muscle fiver composition and the muscle fiver type conversion during unilateral edentulous condition was undertaken in the rostral superficial masseter muscle of the whiter rat. 16 4-week-old male white rats weighting approximately 130gm that crowns of left upper and lower molare were cut intentionally, were divided into 4 groups (one control group and 3 experimental groups). After experimental groups were sacrificed by etherization in 6 days($E_1$), 18 days($E_2$) and 36 days($E_3$) separately, samples of the rostral superficial masseter muscle were obtained bilaterally and the proportion of type I, type IIA, type IIB, and type IIC fibers was determined and counted according to their histochemical activity of myosin ATPase (at pH 9.4, pH 4.6, and pH 4.2)and PAD staining. The obtained results were as follows : 1. The rostral superficial masseter muscle of the white rat contained approximately 47.5% type I fiber and 52.5% type II fiber. 2. Type I/ Type II ratio of molar-present side was increased significantly in the group E2 (18 days group) 3. Type IIA fiber was increased at molar-present side and decreased at molar-absent side in experimental groups.

  • PDF

Effects of Exercise before Steroid Treatment on Type I and Type II Hindlimb Muscles in a Rat Model (스테로이드치료 전 운동이 스테로이드 치료에 의해 유발된 쥐의 위축 Type I, II 뒷다리근육에 미치는 효과)

  • Choe, Myoung-Ae;An, Gyeong-Ju
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • Purpose: The purpose of this study was to examine the effects of daily exercise before steroid treatment on mass, the type I and II fiber cross-sectional area, and myofibrillar protein content of hindlimb muscles in a rat model. Method: Adult male Sprague-Dawley rats were randomly assigned to one of three groups: a control group(n=10) that had a normal saline injection for 7days, a steroid group(n=10) that had a steroid injection for 7days, and an exercise-steroid group(n=10) that ran on the treadmill for 7days before a steroid treatment. Body weight and food intake were measured every day. At 15 days all rats were anesthetized and the soleus, plantaris and gastrocnemius muscles were dissected. Result: The exercise-steroid group showed significant increases as compared with the steroid group in body weight, muscle weight of the soleus and gastrocnemius, type II muscle fiber cross-sectional area of plantaris, and myofibrillar protein content of the soleus, plantaris, and gastrocnemius. As compared with the control group, the steroid group showed significant decreases in body weight and diet intake, muscle weight, the type II fiber cross-sectional area and myofibrillar protein content of the soleus, plantaris, and gastrocnemius muscles. Conclusion: Daily exercise before steroid treatment attenuates hindlimb muscle atrophy, with type II muscle changes more apparent than type I muscle changes.

The Relationships between Muscle Fiber Characteristics, Intramuscular Fat Content, and Fatty Acid Compositions in M. longissimus lumborum of Hanwoo Steers

  • Joo, Seon-Tea;Joo, Sung-Hyun;Hwang, Young-Hwa
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.780-786
    • /
    • 2017
  • The objective of this study was to investigate the relationship between muscle fiber characteristics, intramuscular fat (IMF) content, and fatty acids composition in longissimus lumborum (LL) muscle from Hanwoo steers. The LL muscles were obtained from four quality grades (QG) carcasses and subjected to histochemical analysis. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of muscle fiber types among muscles from four QGs. Both FNP and FAP of type I increased while those of type IIB decreased with increasing QG from QG 2 to QG $1^{{+}{+}}$ (p<0.05). Also, with increasing QG, the saturated fatty acid (SFA) proportion decreased while monounsaturated fatty acid (MUFA) increased significantly (p<0.05). IMF content was positively correlated with both FNP and FAP of type I, but negatively correlated with those of type IIB. The proportions of SFA and MUFA were significantly (p<0.001) correlated with both type I and IIB composition. These results implied that muscle fiber type composition is an important factor influencing fatty acid composition in LL muscle of Hanwoo steer.

Effect of Neuromuscular Electrical Stimulation(NMES) on the Ultrastructure of Skeletal Muscle in Rats (신경근전기자극이 흰쥐 골격근의 미세구조에 미치는 영향)

  • Park, Jang-Sung;Park, Chun-Man
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.1 no.1
    • /
    • pp.57-72
    • /
    • 2003
  • This study conducts electrical stimulation to male white rat of Spargue-Dawley which is 7 weeks, has the weight of 240 g and is seemingly healthy for one or two weeks by means of neuromuscular electrical stimulator in order to examine the effects of neuromuscular electrical stimulation on its gastrocnemius, measures change of weight of gastrocnemius, serum and enzyme activity and then obtains the following conclusions. There is little difference in AST and CPK of weight and serum of gastrocnemius after one or two weeks of conducting neuromuscular electrical stimulation in all experimental groups. On the one hand, as a result of histochemical observation, NMES I group showed hypertrophy of perimysium and increase of sectional diameter of muscle fiber compared to comparison group, but NMES II group showed a similar result to comparison group. When ultrasubstructure was observed under electron microscope, I-type muscle fiber of NMES I group showed well-arranged mitochondria and it was similar to comparison group. II-type muscle fiber showed a large quantity of glycogen granules within sarcoplasmatic and the extension of luminal of T-tubule. I-type muscle fiber of NMES II group had small mitochondria and showed the vacuolar degeneration of mitochondria and extended T-tubule. II-type muscle fiber showed the extension of agranule cytoplasma reticulum with T-tubule and the reduction of amount of glycogen granule within partial sarcoplasmatic.

  • PDF

Effects of Eucommiae Cortex on Myofiber Type Transition and MyoD Expression in Hind Limb Muscle Atrophy of Rats (두충(杜沖) 이 근육위축 흰쥐의 후지 근섬유형 및 MyoD 발현에 미치는 영향)

  • Yun, Duk-Young;Park, Seong-Ha;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.1
    • /
    • pp.47-63
    • /
    • 2008
  • Objectives : Eucommiae cortex is reported that it helps bone and skeletal muscle stronger. In case of bone, many report is presented, but reports related to skeletal muscle are rarely existed. So in order to investigate effects of Eucommiae cortex on the skeletal muscle atrophy following stroke, cerebral infarct was induced by the middle cerebral artery occlusion (MCAO) in the rats. Methods : In order to induce MCAO rats, nylon suture was advanced and then blocked middle cerebral artery(MCA). Water extract of Eucommiae cortex was treated for 15 days, once a day orally, after the MCAO. Effects were evaluated with muscle weights, muscle fiber type composition, cross-sectioned area of muscle fibers in soleus and gastrocnemius of the unaffected and affected hind limbs. And MyoD protein expression in gastrocnemius was demonstrated with immunohistochemistry and western blotting. Results : In the affected hind limb of the MCAO rats, muscle weight loss of gastrocnemius and tibialis anterior muscles were attenuated by Eucommiae cortex treatment. In soleus muscle of the affected hind limb of the MCAO rats, increase of type-I fibers and decrease of type-II fibers were induced by Eucommiae cortex treatment. In soleus muscle of the affected hind limb of the MCAO rats, decrease of cross-sectioned areas of type-I fibers was attenuated by Eucommiae cortex treatment. In gastrocnemius muscle of the affected hind limb of the MCAO rats, increase of type-I fibers and decrease of type-II fibers were induced by Eucommiae cortex treatment. In gastrocnemius muscle of the affected hind limb of the MCAO rats, decreases of cross-sectioned areas of type-I and type-II fibers were attenuated by Eucommiae cortex treatment. In gastrocnemius muscle of the affected and unaffected hind limb of the MCAO rats, MyoD expressions were increased by Eucommiae cortex treatment. Conclusions : These results suggest that Eucommiae cortex has a protective effect against muscle atrophy, through the inhibition of the muscle cell apoptosis, following the central nervous system demage.

Effect of Endurance Exercise Prior to Occurrence of Muscle Atrophy on the Mass, Myofibrillar Protein Content and Fiber Crossectional Area of Atrophied Hindlimb Muscles of Rats (근위축 발생전의 지구력 운동이 쥐의 위축뒷다리근의 질량, 근원섬유 단백질 함량 및 근섬유 단면적에 미치는 영향)

  • 최명애
    • Journal of Korean Academy of Nursing
    • /
    • v.27 no.1
    • /
    • pp.96-108
    • /
    • 1997
  • The purpose of this study was to determine the effect of endurance training prior to occurrence of muscle atrophy on the mass, myofibrillar protein content and fiber crossectional area of atrophied hindlimb muscles of rats. Adult female Wistar rats were trained prior to occurrence of muscle atrophy induced by hindlimb suspension. Training began on the 1st day for 10min /day at 15m /min on a 0% grade, training exercise increased daily in time and intensity so that by the 4th week rats were running 60min /day, at 34m /min on a i3.5% grade. Wet weight and relative weight of soleus, plantaris and gastrocnemius muscle decreased significantly after seven days of hindlimb suspension. Wet weight and relative weight of soleus tended to increase and that of plantaris and gastrocnemius tended to decrease in the exercise group as compared to the control group. Myofibrillar protein content of soleus and gastrocnemius tended to increase and that of plantaris tended to decrease in the endurance trained group as compared to the control group. Fiber crossectional area of Type I, II fiber in soleus and plantaris muscle tended to increase in the exercise group as compared to the control group. Wet weight and relative weight of soleus. plantaris and gastrocnemius decreased significantly, myofibrillar protein content of soleus, plantaris and gastrocnemius increased in hindlimb suspended rats following endurance training as compared to the control group. There was no change in fiber type percentage and crossectional area of type I and II fiber in soleus muscle and that of type I and IIfiber in plantaris muscle decreased in the hindlimb suspended rats following endurance training as compared to the control group. Wet weight and relative weight of soleus and plantaris tended to increase, that of gastrocnemius increased significantly, myofibrillar protein content of soleus and plantaris muscle increased significantly and that of gastrocnemius tended to increase in the hindlimb suspended rats following endurance training as compared to sedentary rats following endurance training. Crossectional area of type I fiber of soleus muscle tended to increase. that of type I fiber of plantaris muscle increased significantly and that of type II fiber tended to increase in hindlimb suspended rats following endurance training as compared to sedentary rats following endurance training. The results suggest that endurance training prior to occurrence of muscle atrophy can attenuate the decrease of mass, myofibrillar protein content and fiber crossectional area induced by hindlimb suspension.

  • PDF

Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts

  • Subramaniyan, Sivakumar Allur;Hwang, Inho
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.392-401
    • /
    • 2017
  • Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

Effects of Morphological Characteristics of Muscle Fibers on Porcine Growth Performance and Pork Quality

  • Lee, Sang Hoon;Kim, Jun-Mo;Ryu, Youn Chul;Ko, Kwang Suk
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.583-593
    • /
    • 2016
  • The aim of this study was to investigate the effects of morphological characteristics of porcine muscle fibers on growth performance, muscle fiber characteristics, and pork quality taken from the longissimus dorsi muscle. A total of 239 crossbred pigs (164 castrated males and 75 females) were used in this study. Experimental pigs were categorized by the total number of muscle fiber (TNF: High and Low) and cross sectional area of muscle fiber (CSAF: Large, Middle, and Small). Their combinations were classified into six groups (High-Large, HL; High-Middle, HM; High-Small, HS; Low-Large, LL; Low-Middle, LM; Low-Small, LS). The TNF and CSAF were significantly (p<0.05) correlated with growth rate and carcass productivity, while the only of the type I number had no meaningful relationships excluding the correlation with loin area (p<0.001). The proportion of type I area was positively correlated with pH45 min while the proportion of type IIB area was negatively correlated with pH45 min and pH24 h (p<0.05). Drip loss and protein denaturation had strong relationships with the proportion of type IIB number or area. The HL group exhibited the greatest growth performance. In addition, the HL group had significantly greater values in protein solubility than the other groups. In conclusion, this study suggest that high TNF combined to large CSAF improve the ultimate lean meat productivity and assure normal meat quality simultaneously with increased both proportion of number and area of type I, type IIA muscle fibers and lowered proportion of number and area of type IIB.

EFFECTS OF CIMATEROL ON CARCASS AND SKELETAL MUSCLE CHARACTERISTICS UNDER AD LIBITUM AND RESTRICTED FEEDING CONDITIONS IN LAMBS

  • Kim, Y.S.;Lee, Y.B.;Ashmore, C.R.;Han, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.4
    • /
    • pp.223-232
    • /
    • 1988
  • Fifty-two wether lambs weighing 30 kg were randomly assigned to 5 treatment groups; 1) initial slaughter. 2) control-maintenance (CON-MT), 3) control-ad libitum (CON-AL), 4) cimaterol-maintenance (CIM-MT) and 5) cimaterol-ad libitum (CIM-AL). Ad libitum-fed animals had free access of a high-concentrate diet, whereas maintenance animals were restricted in feed intake to maintain the initial weight of 30 kg for 90 days. Cimaterol was administered in the feed at 10 mg/kg. Regardless of feeding level, the administration of CIM improved carcass weight (p < .05), dressing % (p < .01), longissimus muscle area (p < .01), leg conformation and muscling (p < .01), USDA yield and quality grades (p < .01) and protein concentration (p < .01) in carcass as well as in muscle. Cimaterol feeding decreased organ wt (p < .01), baekfat depth (p < .01), intramuscular fat and overall fatness. Cimaterol was effective for muscle accretion even under restricted feeding condition. The greater accretion of muscle was the result of the hypertrophy of both type I and type II muscle fibers but the hypertrophy of type II fiber (110%) was much greater than that of type I fiber (37%). Cimaterol feeding decreased muscle DNA concentrations but the number of nuclei per muscle fiber was not changed, indicating that the lower DNA concentration was due to the dilution effect caused by the hypertrophy of muscle fiber. As evidenced by lower flank streaking, lower marbling and darker muscle, CIM feeding adversely affected meat quality. Meat tenderness was also adversely affected, resulting in significantly (p H .01) tougher meat in CIM-fed animals.

Inhibitory Effects of Quercetin on Muscle-type of Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Lee, Soo-Han;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.195-201
    • /
    • 2011
  • The flavonoid quercetin is a low molecular weight compound generally found in apple, gingko, tomato, onion and other red-colored fruits and vegetables. Like other flavonoids, quercetin has diverse pharmacological actions. However, relatively little is known about the influence of quercetin effects in the regulation of ligand-gated ion channels. Previously, we reported that quercetin regulates subsets of nicotinic acetylcholine receptors such as ${\alpha}3{\beta}4$, ${\alpha}7$ and ${\alpha}9{\alpha}10$. Presently, we investigated the effects of quercetin on muscle-type of nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding human fetal or adult muscle-type of nicotinic acetylcholine receptor subunits. Acetylcholine treatment elicited an inward peak current ($I_{ACh}$) in oocytes expressing both muscle-type of nicotinic acetylcholine receptors and co-treatment of quercetin with acetylcholine inhibited $I_{ACh}$. Pre-treatment of quercetin further inhibited $I_{ACh}$ in oocytes expressing adult and fetal muscle-type nicotinic acetylcholine receptors. The inhibition of $I_{ACh}$ by quercetin was reversible and concentration-dependent. The $IC_{50}$ of quercetin was $18.9{\pm}1.2{\mu}M$ in oocytes expressing adult muscle-type nicotinic acetylcholine receptor. The inhibition of $I_{ACh}$ by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate human muscle-type nicotinic acetylcholine receptor channel activity and that quercetin-mediated regulation of muscle-type nicotinic acetylcholine receptor might be coupled to regulation of neuromuscular junction activity.