• Title/Summary/Keyword: Type-I error

Search Result 330, Processing Time 0.025 seconds

Interpretation of Quality Statistics Using Sampling Error (샘플링오차에 의한 품질통계 모형의 해석)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.205-210
    • /
    • 2008
  • The research interprets the principles of sampling error design for quality statistics models such as hypothesis test, interval estimation, control charts and acceptance sampling. Introducing the proper discussions of the design of significance level according to the use of hypothesis test, then it presents two methods to interpret significance by Neyman-Pearson and Fisher. Second point of the study proposes the design of confidence level for interval estimation by Bayesian confidence set, frequentist confidential set and fiducial interval. Third, the content also indicates the design of type I error and type II error considering both productivity and customer claim for control chart. Finally, the study reflects the design of producer's risk with operating charistictics curve, screening and switch rules for the purpose of purchasing and subcontraction.

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

The Binomial Distribution with Fuzzy Valued Probability (퍼지 확률에 의한 이항분포)

  • Gang, Man-Gi;Seo, Hyeon-A;Park, Yeong-Rae;Choe, Gyu-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.33-36
    • /
    • 2008
  • We introduce some properties for fuzzy binomial distributions with fuzzy valued probability. First we define fuzzy type I error and type II error for fuzzy relative frequency and agreement index. And we show that an fuzzy power function and fuzzy binomial frequency function for binomial proportion test.

  • PDF

Simulation analysis of type I error and power for F test and rank transformed F test in $2 times 2$ factorial ANOVA ($2 times 2$ 요인 계획법의 F 검정과 순위 F 검정에 따른 제1종 오류와 검정력 분석에 대한 의태 연구)

  • 최영훈
    • The Korean Journal of Applied Statistics
    • /
    • v.8 no.2
    • /
    • pp.87-97
    • /
    • 1995
  • When there is no main effcts or only one main effect in a $2 \times 2$ factorial design, Type I error rates and power for the rank transformed F test (FR test) for interaction are nearly equal to those of the classical F test. However the power of FR test is quite superior under the exponential distribution rather than the of FR test is quite superior under the exponential distribution rather than the normal distribution. Meanwhile when both main effects are in the model, Type I error rates of FR test, compared with those of F test, decrease as the effect size increases and are dependent on the fashion in which main effects are constructed. In addition, the power of FR test increases as the effect size and the sample size increase and is highly dependent on the manner in which main effects are constructed and the type of population distribution.

  • PDF

A Study on Robustness of a Servosystem with Nonlinear Type Uncertainty (I) - A Synthesis of 2DOF Servosystem (비선형 불확실성에 대한 서보계의 강인성에 관한 고찰(I) - 직달항을 고려한 2자유도 서보계의 구성)

  • Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.91-98
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers a synthesis problems of this 32DOF servosystem with direct transfer term in the system representation. And, a method how we may obtain a gain such that desirable transient response is achieved, is proposed in the presence of the modelling error and disturbance input.

  • PDF

NUMBER OF CYCLES IN EVOLUTIONARY OPERATION

  • Lim, Yong-B.;Park, Sung-H.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.201-208
    • /
    • 2007
  • Evolutionary operation (EVOP) proposed by Box (1957) is a method for continuous monitoring and improvement of a full-scale manufacturing process with the objective of moving the operating conditions toward the better ones. EVOP consists of systematically making small changes in the levels of the two or three process variables under consideration. Data are collected on the response variable at each point of two level factorial design with the center point and a cycle is said to have been completed. The cycles are replicated sequentially until the decision is made on whether further cycle of experiments is needed to conclude the significance of any of main effects or interaction effects or the curvature. In this paper, an improved flow chart of EVOP is proposed and how to determine the number of cycles is studied based on the size of type II error. In order to reject the alternative hypothesis of interests with more confidence and conclude that we believe in the null hypothesis of no effects, we propose a counter measure $p^*-value$ corresponding to the p-value. The relationship of $p^*-value$ to the probability of type II error ${\beta}$ under the alternative hypothesis of interests is analogous to that of p-value to the probability of type I error ${\alpha}$. Also the implementation of EVOP with a mixture experiment is discussed.

A Study on the Statistical Model Validation using Response-adaptive Experimental Design (반응적응 시험설계법을 이용하는 통계적 해석모델 검증 기법 연구)

  • Jung, Byung Chang;Huh, Young-Chul;Moon, Seok-Jun;Kim, Young Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.347-349
    • /
    • 2014
  • Model verification and validation (V&V) is a current research topic to build computational models with high predictive capability by addressing the general concepts, processes and statistical techniques. The hypothesis test for validity check is one of the model validation techniques and gives a guideline to evaluate the validity of a computational model when limited experimental data only exist due to restricted test resources (e.g., time and budget). The hypothesis test for validity check mainly employ Type I error, the risk of rejecting the valid computational model, for the validity evaluation since quantification of Type II error is not feasible for model validation. However, Type II error, the risk of accepting invalid computational model, should be importantly considered for an engineered products having high risk on predicted results. This paper proposes a technique named as the response-adaptive experimental design to reduce Type II error by adaptively designing experimental conditions for the validation experiment. A tire tread block problem and a numerical example are employed to show the effectiveness of the response-adaptive experimental design for the validity evaluation.

  • PDF

Analysis of Steady State Error on Simple FLC (단순 FLC의 정상상태오차 해석)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.897-901
    • /
    • 2011
  • This paper presents a TS (Takagi-Sugeno) type FLC (Fuzzy Logic Controller) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC controller. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In the design of the system, we use a variety of response characteristics like stability, rising time, overshoot, settling time, steady-state error. In particular, it is important for a stable system design to predict the steady-state error because the system's steady-state response of the system is related to the overall quality. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC in the view of steady-state error. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. As well as the FLC parameters of consequence linear equations affect the stability of the system, it also affects the steady-state error. In this study, The system according to the parameter of consequence linear equations of FLC predict the steady-state error and the method to remove the system's steady-state error is proposed using the prediction error value. The simulation is carried out to determine the usefulness of the proposed method.

FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM

  • DRAGOMIR, S.S.;BARNETT, N.S.;GOMM, I.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.101-107
    • /
    • 2000
  • In this paper we establish an upper bound for the estimation error variance of a continuous stream with a stationary variogram V which is assumed to be of the r-Holder type (Lipschitzian) on [-d, d]. Functional properties for the mapping ${\xi}(t):=E[(X-X(t))^2]$, $t{\in}[0,d]$, are also given.

  • PDF