In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.
본 논문에서는 기상레이더 데이터에서 섞여있는 강수에코 및 비강수에코를 분류하기 위하여 Interval Type-2 FCM based RBFNN의 도움으로 사례 및 에코 분류기의 설계를 제안한다. 학습과 테스트 데이터는 현재 기상청에서 사용하는 UF radar data를 사용하였으며, 사례 분류기와 에코패턴 분류기의 데이터를 각각 생성한다. 전처리 과정인 사례 분류를 통하여 강수사례 혹은 비강수사례를 분류하여 강수사례일 경우 에코패턴분류를 진행하며, 비강수사례일 경우 데이터에 관측된 모든 반사도 값을 제거한다. 사례 및 에코 분류기는 Interval Type-2 FCM based RBFNN을 통하여 패턴분류를 진행하며, 패턴분류 성능을 확인한다. 또한 후반부 파라미터의 동정 시, 각 규칙에 파라미터를 전역적으로 구하는 LSE와 각 규칙에 대한 파라미터를 독립적으로 구하는 WSLE의 비교연구를 수행한다. 분류기의 성능을 확인하기 위하여 사례 분류 후 에코패턴분류의 결과는 현재 기상청에서 사용하고는 품질검사(QC) 데이터와 비교하여 평가하였다.
In this paper, we propose the structural design of Interval Type-2 FCM based RBFNN. Proposed model consists of three modules such as condition, conclusion and inference parts. In the condition part, Interval Type-2 FCM clustering which is extended from FCM clustering is used. In the conclusion part, the parameter coefficients of the consequence part are estimated through LSE(Least Square Estimation) and WLSE(Weighted Least Square Estimation). In the inference part, final model outputs are acquired by fuzzy inference method from linear combination of both polynomial and activation level obtained through Interval Type-2 FCM and acquired activation level through Interval Type-2 FCM. Additionally, The several parameters for the proposed model are identified by using differential evolution. Final model outputs obtained through benchmark data are shown and also compared with other already studied models' performance. The proposed algorithm is performed by using Iris and Vehicle data for pattern classification. For the validation of regression problem modeling performance, modeling experiments are carried out by using MPG and Boston Housing data.
In this paper, The classification between precipitation echo(PRE) and non-precipitation echo(N-PRE) (including ground echo and clear echo) is carried out from weather radar data using neuro-fuzzy algorithm. In order to classify between PRE and N-PRE, Input variables are built up through characteristic analysis of radar data. First, the event classifier as the first classification step is designed to classify precipitation event and non-precipitation event using input variables of RBFNNs such as DZ, DZ of Frequency(DZ_FR), SDZ, SDZ of Frequency(SDZ_FR), VGZ, VGZ of Frequency(VGZ_FR). After the event classification, in the precipitation event including non-precipitation echo, the non-precipitation echo is completely removed by the echo classifier of the second classifier step that is built as Type-2 FCM based RBFNNs. Also, parameters of classification system are acquired for effective performance using PSO(Particle Swarm Optimization). The performance results of the proposed echo classifier are compared with CZ. In the sequel, the proposed model architectures which use event classifier as well as the echo classifier of Interval Type-2 FCM based RBFNN show the superiority of output performance when compared with the conventional echo classifier based on RBFNN.
In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.
본 논문 에서는 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 Type-1 퍼지 논리 시스템과 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부 잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현 할 수 있다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다. 첫 번째 모델은 규칙의 전 후반부가 Type-1 퍼지 집합으로 구성된 Type-1 퍼지 논리 시스템을 설계 한다. 두 번째는 규칙 전 후반부에 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할 및 FOU(Footprint Of Uncertainty)형성에는 FCM(Fuzzy C_Means) clustering 방법을 사용하고, 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 최적의 파라미터를 설계한다. 본 논문 에서는 또한 입력 데이터에 인위적으로 가하는 노이즈에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 NOx 데이터를 제안된 모델에 적용하고, 실험을 통하여 노이즈가 첨가되고, 불확실한 정보를 다루기에 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.
This paper is concerned with Interval Type-2 Radial Basis Function Neural Network classifier realized with the aid of Census Transform(CT) and (2D)2LDA methods. CT is considered to improve performance of face recognition in a variety of illumination variations. (2D)2LDA is applied to transform high dimensional image into low-dimensional image which is used as input data to the proposed pattern classifier. Receptive fields in hidden layer are formed as interval type-2 membership function. We use the coefficients of linear polynomial function as the connection weights of the proposed networks, and the coefficients and their ensuing spreads are learned through Conjugate Gradient Method(CGM). Moreover, the parameters such as fuzzification coefficient and the number of input variables are optimized by Artificial Bee Colony(ABC). In order to evaluate the performance of the proposed classifier, Yale B dataset which consists of images obtained under diverse state of illumination environment is applied. We show that the results of the proposed model have much more superb performance and robust characteristic than those reported in the previous studies.
본 논문에서는 TYPE-2 퍼지 추론 기반의 RBF 뉴럴 네트워크(TYPE-2 Radial Basis Function Neural Network, T2RBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델의 은닉층은 TYPE-2 가우시안 활성 함수로 구성되며, 출력층은 Interval set 형태의 연결가중치를 갖는다. 여기에서 규칙 전반부 활성함수의 중심 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 Interval set 형태의 연결가중치 결정에는 경사 하강법(Gradient descent method)을 이용한 오류 역전파 알고리즘을 사용하여 학습한다. 또한, 최적의 모델을 설계하기 위한 학습율 및 활성함수의 활성화 영역 결정에는 입자 군집 최적화(PSO; Particle Swarm Optimization) 알고리즘으로 동조한다. 마지막으로, 제안된 모델의 평가를 위하여 모의 데이터 집합(Synthetic dadaset)을 적용하고 근사화 및 일반화 능력에 대하여 토의한다.
본 연구에서는 $(2D)^2PCA$ 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템을 설계하였다. 기존의 1차원 PCA는 행과 열의 곱으로 표현한 이미지의 차원을 축소한다. 하지만 $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis)는 이미지의 행과 열에서 각각 차원축소를 수행한다. 그 다음 제안된 지능형 패턴분류기로 축소된 이미지를 사용하여 성능을 평가한다. (pRBFNNs)로 성능 평가를 한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세가지의 기능적 모듈로 구성되어 있고 조건는 퍼지 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 RBFNNs의 연결가중치로 일차 선형식으로 표현한다. 또한 차분진화 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다. 실험 평가를 위해 IC&CI 연구실 데이터를 추가하여 실험하였다.
본 연구는 조명변화에 강인한 CT 전처리 기법 기반 개선된 얼굴인식 시스템을 소개한다. 전처리 알고리즘으로 CT알고리즘은 조명이 없는 환경에서도 얼굴의 지역적인 특징만을 추출한다. 얼굴의 지역적인 특징 추출을 가능하게 해준다. 처리된 데이터는 $(2D)^2$ 기반 대표적인 차원축소 알고리즘인 PCA를 사용하여 특징을 추출하였다. 전처리 알고리즘을 통한 특징 데이터는 제안한 방사형 기저함수 신경회로망의 입력으로 사용하였다. 방사형 기저함수 신경회로망의 은닉층은 FCM으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 또한 ABC 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 본 연구는 제안된 시스템의 성능 평가를 위해 Yale Face database B와 CMU PIE database로 실험하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.