• Title/Summary/Keyword: Type specimens

Search Result 2,204, Processing Time 0.029 seconds

Charring Properties of Glued Laminated Timber Columns using Domestic Larch Exposed to High Temperatures (고온에 노출된 국내산 낙엽송 구조용 집성재 기둥의 탄화 특성)

  • An, Jae-Hong;Choi, Yun-Jeong;Kim, Se-Jong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • It is widely known that the level of fire resistance of wooden structure is determined by a charring rate or charring depth, and these are adopted for fire design. In this study, specimens of domestic larch column with a lamination wooden type were prepared and the fire resistance properties such as the charring depth, load ratio and the specific charring rate suggested by EN Code investigated. Test results showed that as expected, the weakest part was the corner of the column, so that the charring depth of the corner was deeper than the other parts of the column. For the load ratio less than 0.9, it had little effect on the charring depth.

Effect of length and content of steel fibers on the flexural and impact performance of self-compacting cementitious composite panels

  • Denise-Penelope N. Kontoni;Behnaz Jahangiri;Ahmad Dalvand;Mozafar Shokri-Rad
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.23-39
    • /
    • 2023
  • One of the important problems of concrete placing is the concrete compaction, which can affect the strength, durability and apparent quality of the hardened concrete. Therefore, vibrating operations might be accompanied by much noise and the need for training the involved workers, while inappropriate functioning can result in many problems. One of the most important methods to solve these problems is to utilize self-compacting cementitious composites instead of the normal concrete. Due to their benefits of these new materials, such as high tensile, compressive, and flexural strength, have drawn the researchers' attention to this type of cementitious composite more than ever. In this experimental investigation, six mixing designs were selected as a base to acquire the best mechanical properties. Moreover, forty-eight rectangular composite panels with dimensions of 300 mm × 400 mm and two thickness values of 30 mm and 50 mm were cast and tested to compare the flexural and impact energy absorption. Steel fibers with volume fractions of 0%, 0.5% and 1% and with lengths of 25 mm and 50 mm were imposed in order to prepare the required cement composites. In this research, the composite panels with two thicknesses of 30 mm and 50 mm, classified into 12 different groups, were cast and tested under three-point flexural bending and repeated drop weight impact test, respectively. Also, the examination and comparison of flexural energy absorption with impact energy absorption were one of the other aims of this research. The obtained results showed that the addition of fibers of longer length improved the mechanical properties of specimens. On the other hand, the findings of the flexural and impact test on the self-compacting composite panels indicated a stronger influence of the long-length fibers.

Estimation of Shear Strength of RC Shear Connection for the Steel-Concrete Composite Girder (강합성 거더용 철근콘크리트 전단연결체의 전단강도 평가)

  • Shin, Hyun Seop;You, Young Jun;Jeong, Youn Ju;Eom, In Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.229-239
    • /
    • 2010
  • For the purpose of improvement of the load carrying capacity and constructibility of the conventional steel-concrete composite girder through a effective appliance of the construction materials and optimization of the girder section, a new type section of composite girder and RC shear connection were proposed. In this study shear strength of the RC shear connection is estimated, and the characteristics of shear load-slip behaviour is analyzed. Push-out tests on shear specimens and FEM analysis with various design parameters are carried out, and results are analyzed. The results of test and FEM analysis showed that shear strength of RC shear connection is underestimated by the design provisions of the current design code. By regression analysis a empirical equation for the estimation of shear strength of RC shear connection is proposed.

Study on flexural toughness and flexural tensile strength of fiber reinforced concrete by mixture ratio of different fibers (이종 섬유 혼입비에 따른 섬유보강 콘크리트의 휨 인성 및 휨 인장강도에 관한 연구)

  • Park, Hong-Yong;Ryu, Jong-Hyun;Jo, Yong-Bum
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • Recently, a new type of polyolefin fiber having a good mechanical properties is being developed, and it is necessary to examine a possibility for the new fiber together to be used as a reinforcing fiber with other types of fiber or by itself. The objective of this study is to find flexural toughness and tensile strength of concrete reinforced with steel and polyolefin fibers. Four point beam tests were performed with 324 specimens following two standard tests methods: KS F 2566 and ASTM C 1399-02. From the test results, the effects of volume fraction of fibers, and aspect ratio of steel fiber on the toughness and tensile strength were investigated, and the optimal ratio of steel fiber to polyolefin fiber was suggested.

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

Stiffness analysis according to support design variables in the metal additive manufacturing process (금속 적층제조에서의 서포트 설계변수에 따른 강성 분석)

  • In Yong Moon;Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.268-275
    • /
    • 2023
  • This paper delves into the crucial realm of support structures in metal additive manufacturing (AM) processes and their direct impact on the stiffness of printed components. With the continuous evolution of AM technologies, optimizing support structures has become imperative to enhance the overall quality and performance of manufactured metal parts. Therefore, in this study, tensile specimens were manufactured using various representative support design variables such as support type, spacing, and penetration depth, and the differences in displacement-load curve were analyzed though tensile test. Using additively manufactured support shaped tensile specimen, the paper presents a comprehensive examination of the effect of support parameters on their stiffness. The findings contribute to advancing the understanding how to design supports to suppress thermal deformation of metal parts during AM process, thereby paving the way for enhanced design freedom and functional performance in the ever-expanding field of AM.

A Study on the Durability of PCM Mixed Concrete for the Reduction of Cold and Hot Damage (혹한·혹서 피해 저감용 PCM 혼입콘크리트의 내구성에 관한 연구)

  • Hoyeol Kim;Il Young Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.390-397
    • /
    • 2024
  • Purpose: In this study, PCM was used to give thermal performance to concrete and analyze its effect on durability to prevent disasters that may occur in concrete when exposed to hot and cold environments. Method: After preparing concrete specimens containing 10, 30, and 50% of the two types of PCMs compared to the cement volume, the pore volume, freeze melting resistance, and scaling resistance were evaluated. Result: Regardless of the type, when PCM powder was mixed with concrete, the amount of pores decreased, and when 10% and 30% were mixed, the freeze-melting resistance was also improved. It was also confirmed that the higher the mixing amount, the better the scaling resistance. Conclusion: When mixing powdered PCM into concrete, it is believed that durability can be improved to a certain level by the filling effect, and additional various studies should be supported for actual field application.

Impact of different agitation methods on smear layer cleaning of mesial canals with accentuated curvature

  • Abel Teves Cordova;Murilo Priori Alcalde;Michel Espinosa Klymus;Leonardo Rigoldi Bonjardim;Rodrigo Ricci Vivan;Marco Antonio Hungaro Duarte
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.12.1-12.10
    • /
    • 2024
  • Objectives: This study evaluated the impact of different methods of irrigant agitation on smear layer removal in the apical third of curved mesial canals of 3 dimensionally (D) printed mandibular molars. Materials and Methods: Sixty 3D-printed mandibular second molars were used, presenting a 70° curvature and a Vertucci type II configuration in the mesial root. A round cavity was cut 2 mm from the apex using a trephine of 2 mm in diameter, 60 bovine dentin disks were made, and a smear layer was formed. The dentin disks had the adaptation checked in the apical third of the teeth with wax. The dentin disks were evaluated in environmental scanning electron microscope before and after the following irrigant agitation methods: G1(PIK Ultrasonic Tip), G2 (Passive Ultrasonic Irrigation with Irrisonic- PUI), G3 (Easy Clean), G4 (HBW Ultrasonic Tip), G5 (Ultramint X Ultrasonic tip), and G6 (conventional irrigation-CI) (n = 10). All groups were irrigated with 2.5% sodium hypochlorite and 17% ethylenediaminetetraacetic acid. Results: All dentin disks were 100% covered by the smear layer before treatment, and all groups significantly reduced the percentage of the smear layer after treatment. After the irrigation protocols, the Ultra-X group showed the lowest coverage percentage, statistically differing from the conventional, PIK, and HBW groups (p < 0.05). There was no significant difference among Ultramint X, PUI-Irrisonic, and Easy Clean (p > 0.05). None of the agitation methods could remove the smear layer altogether. Conclusions: Ultramint X resulted in the most significant number of completely clean specimens.

Clinical utility of endoscopic ultrasound-guided tissue acquisition for comprehensive genomic profiling of pancreatic cancer

  • Nozomi Okuno;Kazuo Hara;Nobumasa Mizuno;Shin Haba;Takamichi Kuwahara;Yasuhiro Kuraishi;Daiki Fumihara;Takafumi Yanaidani
    • Clinical Endoscopy
    • /
    • v.56 no.2
    • /
    • pp.221-228
    • /
    • 2023
  • Background/Aims: Endoscopic ultrasound-guided tissue acquisition (EUS-TA) is essential for the diagnosis of pancreatic cancer. The feasibility of comprehensive genomic profiling (CGP) using samples obtained by EUS-TA has been under recent discussion. This study aimed to evaluate the utility of EUS-TA for CGP in a clinical setting. Methods: CGP was attempted in 178 samples obtained from 151 consecutive patients with pancreatic cancer at the Aichi Cancer Center between October 2019 and September 2021. We evaluated the adequacy of the samples for CGP and determined the factors associated with the adequacy of the samples obtained by EUS-TA retrospectively. Results: The overall adequacy for CGP was 65.2% (116/178), which was significantly different among the four sampling methods (EUS-TA vs. surgical specimen vs. percutaneous biopsy vs. duodenal biopsy, 56.0% [61/109] vs. 80.4% [41/51] vs. 76.5% [13/17] vs. 100.0% [1/1], respectively; p=0.022). In a univariate analysis, needle gauge/type was associated with adequacy (22 G fine-needle aspiration vs. 22 G fine-needle biopsy [FNB] vs. 19 G-FNB, 33.3% (5/15) vs. 53.5% (23/43) vs. 72.5% (29/40); p=0.022). The sample adequacy of 19 G-FNB for CGP was 72.5% (29/40), and there was no significant difference between 19 G-FNB and surgical specimens (p=0.375). Conclusions: To obtain adequate samples for CGP with EUS-TA, 19 G-FNB was shown to be the best in clinical practice. However, 19 G-FNB was not still sufficient, so further efforts are required to improve adequacy for CGP.

Effect of Confining Pressure, Temperature, and Porosity on Permeability of Daejeon Granite: Experimental Study (대전 화강암의 투수계수에 미치는 구속압, 온도, 공극률의 영향: 실험적 연구)

  • Donggil Lee;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.71-87
    • /
    • 2024
  • In deep geological disposal of high-level radioactive waste, the surrounding rock at the immediate vicinity of the deposition hole may experience localized changes in permeability due to in-situ stress at depth, swelling pressure from resaturated bentonite buffer, and the heat generated from the decay of radioactive isotopes. In this study, experimental data on changes in permeability of granite, a promising candidate rock type in South Korea, were obtained by applying various confining pressures and temperature conditions expected in the actual disposal environment. By conducting the permeability test on KURT granite specimens under three or more hydrostatic pressure conditions, the relation in which the permeability decreases exponentially as the confining pressure increases was derived. The temperature-induced changes in permeability were found to be negligible at temperatures below the expected maximum of 90℃. In addition, by establishing a relation in which the initial permeability is proportional to the power of the initial porosity, it was possible to estimate permeability value for granite with a specific porosity under a certain confining pressure.