• Title/Summary/Keyword: Type of driving range

Search Result 111, Processing Time 0.038 seconds

Development of Stand-Alone Underground Water Pumping System using Photovoltaics System (태양광발전을 이용한 독립형 지하수 양수 시스템 개발)

  • Lee, Seung-Hun;Hwang, Jung-Hoon;Cho, Woon-Sik;Kim, Man-Il;Lee, Joon-Gee;Park, Moon-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.69-72
    • /
    • 2009
  • In this paper, the Stand-alone underground water pumping system was developed that is consist of Submersible Pump (AC type), Photovoltaic Array and Power converter by the application of solar energy. And also wish to introduce system that is possible to supply of drinking water or water for agriculture using solar energy at desertification area or a Off-grid area, interior etc. and operation test results. This system can use in deep tube well of 200m range with common Submersible Pump and maximized to the quantity of pumping through M.P.P.T control. Also system availability raised through apply various driving mode.

  • PDF

A Study on the Dielectric Barrier Discharges Plasmas of Flat Atmospheric Pressure Using an AC Pulse Voltage (교류 펄스 전압을 이용한 평판형 대기압 유전격벽방전 플라즈마의 특성 분석)

  • Lee, Jong-Bong;Ha, Chang-Seung;Kim, Dong-Hyun;Lee, Ho-Jun;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.717-720
    • /
    • 2012
  • Various types of dielectric-barrier-discharge (DBD) devices have been developed for diverse applications for the last decade. In this study, a flat non-thermal DBD micro plasma source under atmospheric pressure has been developed. The flat-panel type plasma is generated by bipolar pulse voltages, and driving gas is air. In this study, the plasma source was investigated with intensified charge coupled device (ICCD) images and Optical Emission Spectroscopy (OES). The micro discharges are generated on the crossed electrodes. For theoretical analysis, 2-dimensional fluid simulation was performed. The plasma source can be driven in air, and thus the operation cost is low and the range of application is wide.

Improving In-Vehicle Display and Control Design for Older Drivers

  • Ryu, Jae-Heok;Lee, Seong-Il
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.4
    • /
    • pp.288-291
    • /
    • 2011
  • Recommendations for older driver-friendly automobile interior design have been determined by taking into account older people's physical and cognitive characteristics. Twenty three older people (aged from 54 to 78) and five younger people (from 20 to 29) performed several tasks in actual driving conditions, in which their reaction times and performance errors were recorded. Some design factors were found to be related to older drivers' visibility and controllability. Several design recommendations were proposed in terms of cluster color and font, display location, and HVAC control type. Proposed recommendations are expected to satisfy a wider range of older drivers as these will facilitate automobile interior designs which are fitter to older drivers' visual, cognitive, and manual capabilities.

Improvement of Reflection Angle of Optical Scanner Utilizing Magnetic Effect (자기효과를 이용한 광 Scanner의 반사각 개선)

  • Kim, Hung-Gun;Park, Kyung-Il;Shin, Kwang-Ho;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1718-1720
    • /
    • 2004
  • This paper is focused on the improvement of reflection angle of an optical scanner by changing a shape of a torsion bar attached with an optical scanner reflector(mirror). In order to improve the light efficiency of the optical scanner by virtue of the magnetic effect, which tiny magnets are attached under both ends of the optical scanner reflector. and hence the optical scanner reflector was operated in relatively lower driving voltage. By changing the torsion bar's shape I type into S type, we've got the lower resonant frequency(32.5Hz) of an optical scanner than that of conventional one(50Hz). According to these results. The reflection angle of an optical scanner with magnets was much larger in the range of about 14.8$^{circ}$ without a magnet. By making use of a magnetic actuator instead of a conventional electrostatic actuator, the optical scanner was less influenced from outdoor dust or moisture.

  • PDF

A Study on the Meter-Out and Meter-In Speed Control Characteristics in Pneumatic Cushion Cylinders (공기압 쿠션 실린더의 미터아웃/미터인 속도제어 특성에 관한 연구)

  • Kim, Do-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Pneumatic cylinders are widely used to actuators in automatic equipments because they are relatively inexpensive, simple to install and maintain, offer robust design and operation, are available in a wide range of standard sizes and design alternatives. This paper presents a comparative study among the dynamic characteristics of meter-out and meter-in speed control of pneumatic cushion cylinders with a relief valve type cushion mechanism. Because of the nonlinear differential equations and a requirement for simultaneous iterative solution in a mathematical model of a double acting pneumatic cushion cylinder, a computer simulation is carried out to investigate pressure, temperature, mass flow rate in cushion chamber and displacement and velocity time histories of piston under various operating conditions. It is found that the piston velocity and pressure response in meter-in speed control are more oscillatory than with meter-out those when pneumatic cushion cylinders are driven at a high-speed. In meter-out speed control, the effective area of the flow control valve is larger than that of meter-in, and the supply pressure has to be much higher than the pressure required to move the load because it has also to overcome the back pressure in cushion chamber.

Motion Control of Mobile Robot with Arc Sensor for Lattice Type Welding (아크센서를 적용한 격자형 용접용 모빌 로봇의 제어)

  • Jeon, Yang-Bae;Han, Young-Dae;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.319-324
    • /
    • 2001
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or corner. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The experiment has been done to verify the effectiveness of the proposed controllers. These results are shown to fit well by the simulation results.

  • PDF

An Estimation of power capacity for electric motor scooter (전동스쿠터의 필요 동력 용량 계산)

  • Kim, Moonhwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.847-849
    • /
    • 2009
  • Usually, after the decisions of the performance and range in the commercial vehicle, it is designed the ratings of the electric and mechanical elements for the vehicles. In this paper, the given performance and driving conditions, which are the maximum velocity, mileage, total weight of the normal gasoline scooter, battery type and size, and so on, are analysed for the design of the electric scooter. The maximum rotational speed and needed torque values of the electric motor which is substituted for the gasoline engine are calculated. These values can help to calculate the rating of the electric motor. In the calculation to obtain the torque and speed values, battery discharge and the running resistances are considered. We can decide the electric motor current value from the torque and speed values. The electric motor current values, which are significant parameter to decide the motor type and dimensions and characteristics of the electric motor, are decided by numerical simulation by the above conditions.

  • PDF

An Implementation of a Hall Sensor position compensation algorithm for the Muli-pole Type BLDC motor driving with the DSP(TMS320F28335). (DSP(TMS320F28335)를 이용하는 다극 BLDC 전동기 구동을 위한 홀센서 절대위치 보정 알고리즘 구현법)

  • Park, Jun-ho;Lim, Dong-gyun;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.391-394
    • /
    • 2014
  • In this paper, we introduce a method of determining the absolute position of the rotor for the vector control of Hall sensor type multi-pole BLDC motor using the DSP(TMS320F28335), and implement an algorithm to complement the problems of the conventional method. The switching method of the inverter for providing desired sinusoidal current to each phase of a motor, we adopt Space-Vector pulse width modulation method. In order to increase the speed range, Field-Weakness control method are used. In order to verify the proposed algorithm, we compare the value of Iqe, Ide and phase currents with the values before compensated.

  • PDF

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

Study on Driving Simulation of Spoke-type Shield TBM Considering Operation Conditions (TBM 운전조건을 고려한 스포크형 쉴드TBM의 굴진모사 연구)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.456-467
    • /
    • 2019
  • In this study, the discrete element method was used to simulate the excavation of spoke-type shield TBM. The horizontal stress coefficient was used for the ground to simulate the increase of the horizontal stress according to the depth, and the driving conditions were set based on the torque generated from the cutterhead of the TBM to excavate within the operating range. That is, when the value of the torque generated at the cutterhead exceeds the given operating condition, the speed of excavation is constantly reduced, and conversely, the method of increasing the speed of excavation is considered. The change speed of the excavation was given the minimum change requirement in consideration of the driver's review time, and the change was possible according to the excavation conditions. In order to use these conditions, the user-subroutine was considered separately, and the results show that the DEM model were able to analyze the excavation within the considered operating range.