• Title/Summary/Keyword: Type Specimens

Search Result 2,191, Processing Time 0.032 seconds

The first record of Ulva adhaerens(Ulvaceae, Chlorophyta) from Jeju Island, Korea

  • Hyung Woo, Lee;Eun Hee, Bae;Myung Sook, Kim
    • Journal of Species Research
    • /
    • v.11 no.4
    • /
    • pp.266-277
    • /
    • 2022
  • The current surveys of Ulva in the subtidal area around Jeju Island give a chance to discover unrecorded green algal species of the Korean macroalgal flora. As a result of this investigation, we found Ulva adhaerens Matusmoto & Shimada, inhabiting the subtidal regions, up to 15 m deep, and conducted the DNA barcoding on plastid rbcL-3P and tufA regions with describing the morphological characteristics. Our specimens of U. adhaerens forms a monophyletic clade with the Japanese type specimen and U. piritoka Ngāti Kuri, Heesch & W.A. Nelson from New Zealand exhibiting each 0.3% sequence divergences, respectively, in the plastid rbcL-3P. The genetic variation of U. adhaerens clade is 1.0-3.9% in rbcL-3P and 4.8-9.8% in tufA to each Ulva species, including the generic type, U. lactuca Linneaus. The morphology of Korean U. adhaerens specimens is identical to the type specimens of U. adhaerens from Japan having the development of rhizoidal filaments from both of the cell layers of the distromatic blade and the extension of rhizoidal clumps with adhesive trait between blades by extended rhizoidal clumps at the basal blades. The thallus attachment to substrate is by numerous minute discoidal plates made up of rhizoids originating from the inner part of distromatic blades in basal. Although there are still some problems to resolve the relationship between U. adhaerens and U. piritoka in the rbcL dataset and the phylogenetic pattern of the Group II intron of rbcL, we propose the new record of U. adhaerens in Korean macroalgal flora based on the morphological characteristics of Korean specimens. Continued study of the genus Ulva by morphological and molecular assessment will delimit the species of Ulva, elucidate the relationships between them, and uncover the species diversity.

A STUDY ON THE ABRASION RESISTANCE AND SURFACE ROUGHNESS OF THE DENTAL STONES (수종 치과용 석고의 마모저항도 및 표면조도에 관한 비교 연구)

  • Shim, Hye-Won;Yi, Yang-Jin;Cho, Lee-Ra;Chung, Kyung-Ho;Kim, Kyoung-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.2
    • /
    • pp.184-192
    • /
    • 2002
  • The purpose of this study was to investigate the abrasion resistance and surface roughness of conventional dental stones and improved dental stones and newly developed dental stones. Materials included in this study were several dental stones and newly developed dental stone; 2 type III. 6 type IV (including newly developed dental stone). 1 type V Ten specimens for each material, total ninety specimens were made. Each specimen was subjected to 50 complete cycle abrasion under constant load 0.42N at speed or 6mm per sec. The depth after abrasion test was measured for each specimen. Surface roughness before and after abrasion test was compared. The results were as follows ; 1. The resin containing die materials such as Tuff Rock and Resin Rock had superior abrasion resistance. 2. Type IV, V dental stone exhibited greater abrasion resistance than Type III dental stone. 3. The results or the surface roughness showed similar pattern with the abrasion resistance.

Cross-section Morphology and Surface Roughness of an Article Manufactured by Material Extrusion-type 3D Printing according to the Thermal Conductivity of the Material

  • Woo, In Young;Kim, Do Yeon;Kang, Hong Pil;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.46-50
    • /
    • 2020
  • Material extrusion (ME)-type 3D printing is the most popular among the 3D printing processes. In this study, the cross-section morphologies of ME-type 3D printing manufactured specimens were observed with respect to the thermal properties of the material. The cross-section morphology of a specimen is related to the deposition strength, and the outside profile of the cross-section is related to the surface roughness. The filaments used in this study, with different thermal conductivities, were the acrylonitrile-butadiene-styrene (ABS), the high impact polystyrene (HIPS), the glycol-modified polyethylene terephthalate (PETG), and the polylactic acid (PLA). The cross-sections and the surfaces of the 3D manufactured specimens were examined. In ME-type 3D printing, the filaments are extruded through a nozzle and they form a layer. These layers rapidly solidify and as a result, they become a product. The thermal conductivity of the material influences the cooling and solidification of the layers, and subsequently the cross-section morphology and the surface roughness.

Static and dynamic characteristics of silty sand treated with nano-silica and basalt fiber subjected to freeze-thaw cycles

  • Hamid Alizadeh Kakroudi;Meysam Bayat;Bahram Nadi
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • This study investigates the influence of nano-silica and basalt fiber content, curing duration, and freeze-thaw cycles on the static and dynamic properties of soil specimens. A comprehensive series of tests, including Unconfined Compressive Strength (UCS), static triaxial, and dynamic triaxial tests, were conducted. Additionally, scanning electron microscopy (SEM) analysis was employed to examine the microstructure of treated specimens. Results indicate that a combination of 1% fiber and 10% nano-silica yields optimal soil enhancement. The failure patterns of specimens varied significantly depending on the type of additive. Static triaxial tests revealed a notable reduction in the brittleness index (IB) with the inclusion of basalt fibers. Specimens containing 10% nano-silica and 1% fiber exhibited superior shear strength parameters and UCS. The highest cohesion and friction angle were obtained for treated specimens with 10% nano-silica and 1% fiber, 90 kPa and 37.8°, respectively. Furthermore, an increase in curing time led to a significant increase in UCS values for specimens containing nano-silica. Additionally, the addition of fiber resulted in a decrease in IB, while the addition of nano-silica led to an increase in IB. Increasing nano-silica content in stabilized specimens enhanced shear modulus while decreasing the damping ratio. Freeze-thaw cycles were found to decrease the cohesion of treated specimens based on the results of static triaxial tests. Specimens treated with 10% nano-silica and 1% fiber experienced a reduction in shear modulus and an increase in the damping ratio under freeze-thaw conditions. SEM analysis reveals dense microstructure in nano-silica stabilized specimens, enhanced adhesion of soil particles and fibers, and increased roughness on fiber surfaces.

Effects of Cement Alkalinity on the Time-to-Corrosion of Reinforcing Steel in Concrete under Chloride Exposure

  • Nam, Jingak;Hartt, William H.;Kim, Kijoon
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.245-250
    • /
    • 2004
  • A series of classical G109 type concrete specimens was exposed to cyclic wet and dry ponding with 15 w/o NaCl solution for approximately five years. Mix design variables included 1) three cement alkalinities (EqA of 0.97, 0.52, and 0.36) and 2) three water-cement ratios (0.50, 0.41, and 0.37). To determine the corrosion initiation time, corrosion potential and macro-cell current between top and bottom bars were monitored. Subsequent to corrosion initiation, specimens were autopsied and visually inspected. Concrete powder samples were collected from top rebar trace and chloride concentration was measured. Also, time-to-corrosion, $T_i$, for specimens of the individual mix designs was represented using Weibull analysis. Time-to-corrosion was a distributed parameter; and because of this, corrosion initiation of four identical specimens for each mix varied, often over a relatively wide range. Specimens fabricated using the lowest water cement ratio and the highest alkalinity cement exhibited the longest time-to-corrosion initiation and the highest chloride threshold levels. Time-to-corrosion did not increase monotonically with cement alkalinity, however, presumably as a consequence of relatively high $Cl^-$ binding in the lower pore water pH range. The chloride threshold level, $Cl_{th}$, increased with increasing $T_i$ and, consequently, was greatest for the highest cement alkalinity specimens.

A Study on Physical Properties of Wool with Shrink-resist treatment and Felting (양모 방축가공에 따른 물리적 성질 변화)

  • Jeong, Ahyun;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.19 no.2
    • /
    • pp.23-35
    • /
    • 2015
  • In this study, the effect of shrink-resist treatment agent on the wool finishing, specifically anti-felting of wool product was studied. We aimed at providing preliminary data leading to the diversification of high-value added fashionable wool product. Two type of wool fabrics, dense and sheer, were employed. The fabric specimens were treated with solutions of shrink-resist treatment agent with wet pick-up rate 110%, 130%, and 150%, respectively, by using a padding mangle. The solution treated fabric specimens were then dried at room temperature first, at $90^{\circ}C$ for 15 minutes in a drying oven, and finally cured at $130^{\circ}C$ for 3 minutes. Cured wool fabric specimens were then subjected to a felting process. The physical and mechanical properties, including shrinkage rate along warp/filling direction, thickness at specified measurement pressure, drape stiffness, and air-permeability, were analyzed. After felting process, the shrinkage rates of wool fabric specimens, treated with shrink-resist treatment agent, were lower than those of control wool fabric specimens. The stiffness values of wool fabric specimens measured by using Flexometer were increased.

Retrofitting of shear damaged RC beams using CFRP strips

  • Altin, Sinan;Anil, Ozgur;Toptas, Tolga;Kara, M. Emin
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.207-223
    • /
    • 2011
  • The results of an experimental investigation are presented in this paper for retrofitting of shear damaged reinforced concrete beams by using U shaped CFRP strips. The experimental program is consisted of seven shear deficient T cross sectioned 1/2 scale simply supported beam specimens. One beam was used as reference specimen, and the remaining six specimens were tested in two stages. At the first stage, specimens were shear damaged severely, and then were retrofitted by using CFRP strips with or without fan type anchorages. Finally, retrofitted beams were tested up to failure. Three different CFRP strip spacing were used such as 125 mm, 150 mm, and 200 mm. The effect of anchorages on shear strength and behavior of the retrofitted specimens is investigated. CFRP strips without anchorages improved the shear strength, but no flexural failure mode was observed. Specimens showed brittle shear failure due to peeling of CFRP strip from RC beam surface. Shear damaged specimens retrofitted with anchoraged CFRP strips showed improved shear strength and ductile flexural failure. Maximum strains at anchoraged strips were approximately 68% larger than that of strips without anchorages.

Electrical Properties of n-type Co-doped Fe-Si Alloy (Co 첨가 Fe-Si n형 반도체의 전기적 특성)

  • Pai, Chul-Hoon;Kim, Jeung-Gon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.860-865
    • /
    • 2009
  • The effect of Co additive on the electrical properties of Fe-Si alloys prepared by a RF inductive furnace was investigated. The electrical conductivity and Seebeck coefficient were measured as a function of the temperature under an Ar atmosphere to evaluate their applicability to thermoelectric energy conversion. The electrical conductivity of the specimens increased as the temperature increased, showing typical semiconducting behavior. The electrical conductivity of Co-doped specimens was higher than that of undoped specimens and increased slightly as the amount of Co additive increased. This is most likely due to the difference in the carrier concentration and the amount of residual metallic phase ${\varepsilon}$-FeSi (The ${\varepsilon}$-FeSi was detected in spite of an annealing treatment of 100 h at $830^{\circ}C$). Additionally, metallic conduction increased slightly as the amount of Co additive increased. On the other hand, Co-doped specimens showed a lower Seebeck coefficient due to the metallic phase. The power factor of Co-doped specimens was higher than that of undoped specimens. This would be affected more by the electrical conductivity compared to the Seebeck coefficient.

Tensile Test Results for Metal 3D Printed Specimens of Stainless Steel 316L Manufactured by PBF and DED (스테인리스강 316L 재질의 PBF 및 DED 방식 금속 3D프린팅 시편 인장 시험 결과)

  • Kyungnam Jang;Seunghan Yang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Additive manufacturing technology, called as 3D printing, is one of fourth industrial revolution technologies that can drive innovation in the manufacturing process, and thus should be applied to nuclear industry for various purposes according to the manufacturing trend change in the future. In this paper, we performed tensile tests of 3D printed stainless steel 316L as-built specimens manufactured by two types of technology; DED (Directed Energy Deposition) and PBF (Powder Bed Fusion). Their mechanical properties (tensile strength, yield strength, elongation and reduction of area) were compared. As a result of comparison, the mechanical properties of the PBF specimens were slightly better than those of DED specimens. In the same additive type of specimens, the tensile and yield strength of specimens in the X and Y direction were higher than those in the Z direction, but the elongation and ROA were lower.

Shear Reinforcement for Flat Plate-Column Connections using Lattice Bars (래티스형 철근을 이용한 무량판 구조의 접합부 전단보강)

  • 안경수;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • In flat-plate floors, slab-column connections are broken down with a brittle shear failure. And it can cause the collapse of the whole structures. Thus, the proper method of shear reinforcement in flat plate-column connections must be required. The objective of this study is to compare shear reinforcement specimens using lattice bars to no shear reinforcement specimens in view of shear strength and ductility of the flat plate-column connections. The test results have shown that shear reinforcement specimens varying $\rho$, $b_0$/d and $C_1$/$C_2$ increase in shear strength by 36.85% and in ductility by 9.16 for no shear reinforcement specimens on the average. This results confirm the effectiveness of this type of shear reinforcement in improving shear strength and ductility.

  • PDF