• Title/Summary/Keyword: Type I collagen gene

Search Result 72, Processing Time 0.034 seconds

Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.51 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • Purpose: Runx2 (runt-related transcription factor 2), a bone-specific transcription factor, is a key regulator of osteoblast differentiation and its expression is induced by the activation of BMP-2 signaling. This study examined whether zinc modulates BMP-2 signaling and therefore stimulates Runx2 and osteoblast differentiation gene expression. Methods: Two osteoblastic MC3T3-E1 cell lines (subclones 4 as a high osteoblast differentiation and subclone 24 as a low osteoblastic differentiation) were cultured in an osteogenic medium (OSM) as the normal control, Zn-($1{\mu}M$ Zn) or Zn+($15{\mu}M$ Zn) for 24 h. The genes and proteins for BMP-2 signaling (BMP-2, Smad-1/p-Smad-1), transcription factors (Runx2, osterix), and osteoblast differentiation marker proteins were assessed. Results: In both cell lines, BMP-2 mRAN and protein expression and extracellular BMP-2 secretion all decreased in Zn-. The expression of Smad-1 (downstream regulator of BMP-2 signaling) and p-Smad-1 (phosphorylated Smad-1) also downregulated in Zn-. Furthermore, the expression of the bone-specific transcription factors, Runx2 and osterix, decreased in Zn-, which might be due to the decreased BMP-2 expression and Smad-1 activation (p-Smad-1) by Zn-, because Runx2 and osterix both are downstream in BMP-2 signaling. Bone marker gene expression, such as alkaline phosphatase (ALP), collagen type I (COLI), osteocalcin, and osteopontin were also downregulated in Zn-. Conclusion: The results suggest that a zinc deficiency in osteoblasts suppresses the BMP-2 signaling pathway via the suppression of Smad-1 activation, and this suppressed BMP-2 signaling can cause poor osteoblast differentiation.

Effects of 630-nm Organic Light-emitting Diodes on Antioxidant Regulation and Aging-related Gene Expression Compared to Light-emitting Diodes of the Same Wavelength

  • Mo, SangJoon;Kim, Eun Young;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.227-235
    • /
    • 2022
  • To investigate the aging-related physiological functions of organic light-emitting diodes (OLEDs), we examined mRNA expression changes in aging-related genes due to oxidative stress inhibition by 630-nm red light OLEDs. As a result of irradiating 630-nm OLED with an intensity of 5 mW/cm2 for 15 min, the viability of dermal fibroblasts significantly increased by 1.3-fold. In addition, reactive oxygen species generated by H2O2 were significantly reduced about 4.9-fold by irradiation with 630-nm OLED. Quantitative reverse-transcription polymerase chain reaction results showed that 630-nm OLEDs altered aging-related gene mRNA expression levels through antioxidant activity. The mRNA expression levels of matrix metalloproteinase1 (MMP1) and MMP9 decreased significantly, by about 2.2- and 2.5-fold, compared to the control group, whereas those of collagen, type I, and alpha 1 increased significantly, by 4.9-fold. The mRNA expression levels of cancer suppression genes p16 and p53 in dermal fibroblasts were also significantly reduced by 630-nm OLED irradiation, by about 1.4- and three-fold, respectively, compared to the control. Overall, it was confirmed that 630-nm OLED irradiation lowered the level of ROS formation induced by H2O2 in dermal fibroblasts, and that this antioxidant effect could regulate the mRNA expression levels of aging- and tumor suppression-related genes. This study shows a link between 630-nm OLED irradiation and anti-aging physiological functions such as antioxidant function, and suggests the potential of OLEDs as a useful light source for skin care.

Skin Moisturizing Activity of Unripe Apple(Immature Fruit of Malus pumila) in Mice (풋사과 추출물의 피부 보습 효과)

  • Park, Hye Rim;Kim, Jae Kwang;Lee, Jae Kyoung;Choi, Beom Rak;Kim, Jong Dae;Ku, Sae Kwang;Jegal, Kyung Hwan
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.35 no.4
    • /
    • pp.63-74
    • /
    • 2022
  • Objectives : Skin aging is generally characterized by wrinkles, sagging, loss of elasticity roughness, pigmentation and dryness. This changes is caused by reducing the elements constituting the extracellular matrix contributing to the physiological properties of the skin, such as collagen fiber, elastic fiber, and hyaluronic acid. Adequate skin hydration is important to maintain normal skin function and reduce skin aging. The present study is objective to observe skin moisturizing effects of Unripe apple(UA, Immature fruit of Malus pumila Mill) in vivo and its underlying molecular mechanisms. Methods : ICR mice were orally administerd UA(100, 200 and 400mg/kg/day) for 8 weeks, and skin water contents and the expression of transforming growth factor (TGF)-𝛽1, ceramide, hyaluronan and collagen type I(COL1) were measured in dorsal back skin of the mice. Gene expression of hyaluronan synthase(HAS1, HAS2, HAS3), collagen synthase(COL1A1, COL1A2) and TGF-𝛽1 were also determined by realtime RT-PCR. Results : Skin water contents and the expression of TGF-𝛽1, ceramide, COL1 and hyaluronan were significantly increased in UA group(100, 200 and 400mg/kg/day) compared to vehicle control. The mRNA expression of HAS isoform(HAS1, HAS2, HAS3), COL1A1, COL1A2, and TGF-𝛽1 were also significantly increased by UA. Conclusions : UA has skin moisturizing effects and enhancement activities in skin function related components(COL1, hyaluronan, ceramide and TGF-𝛽1). These results suggested that UA can be a developing candidate for developing alternative skin protective agent or functional food ingredient.

Expression Pattern of Skeletal-Muscle Protein Genes and Cloning of Parvalbumin mRNA in Dark-banded Rockfish (Sebastes inermis) (볼락(Sebastes inermis) 근육단백질 유전자의 성장단계별 발현 양상과 parvalbumin 유전자 클로닝)

  • Jang, Yo-Soon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Differentially Expressed Gene (DEG) was obtained from Differential Display Reverse Transcription (DDRT)-PCR using Annealing Control Primer (ACP) to search and clone genes related to developmental stages of Sebastes inermis. By using 120 ACPs, the nucleotide sequences obtained from 16 DEGs showing higher expression in 6-month-old skeletal muscle than 18-month-old ones and from 22 DEGs displaying stronger expression in 18-month-old than 6-month-old were analyzed and BLAST was conducted. The results identified that DEGs shared 69~95% homology with genes of parvalbumin (PVALB), nucleoside diphosphate kinase (NDK) B, tropomyosin (TPM), troponin I (TnI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), muscle-type creatine kinase (CKM2), small EDRK-rich factor 2 (SERF2), adenosine monophosphate deaminase (AMPD), Trimeric intracellular cation channel type A (TRICA), Rho GTPase-activating protein 15 (ARHGAP15), S-formylglutathione hydrolase (Esterase D; ESD), heat shock protein 70 (hsp70), type 1 collagen alpha 2 (COL1A2), glutathione S-transferase, Mid1-interacting protein 1 (Mid1lip1), myosin light chain 1 (MYL1), sarcoplasmic/endoplasmic reticulum calcium ATPase 1B (SERCA1B), and ferritin heavy subunit (FTH1). Expression pattern by developmental stage of DEG14 and PVALB exhibiting strong expression in 6-month-old skeletal muscle was investigated using real time PCR. Expression was reduced as Sebastes inermis grew. Expression of PVALB gene was extremely low after 6 months of age. Expression of CKM2 showed higher expression in 18-month-old skeletal muscle than in 6-month-old muscles, and increased continuously until 4 years old, after which CKM2 expression became gradually reduced. By analysis of tissue-specific expression patterns of DEG, DEG14 was expressed mainly in skeletal muscle, liver, kidney and spleen tissues, whereas PVALB expression was expressed in skeletal muscle and kidney, but not in liver and spleen tissues. CKM2 was expressed in skeletal muscle, kidney, and spleen tissues, but not in liver tissues. PVALB gene was composed of 110 amino acids, which constituted 659 bp nucleotides. The results reported here demonstrate that the expression patterns of parvalbumin and CKM2 could be used as molecular markers for selecting fishes exhibiting fast growth.

Effect of microgrooves and fibronectin conjugation on the osteoblast marker gene expression and differentiation

  • Park, Su-Jung;Leesungbok, Richard;Ahn, Su-Jin;Im, Byung-Jin;Lee, Do Yun;Jee, Yu-Jin;Yoon, Joon-Ho;Cui, Taixing;Lee, Sang Cheon;Lee, Suk Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.496-505
    • /
    • 2015
  • PURPOSE. To determine the effect of fibronectin (FN)-conjugated, microgrooved titanium (Ti) on osteoblast differentiation and gene expression in human bone marrow-derived mesenchymal stem cells (MSCs). MATERIALS AND METHODS. Photolithography was used to fabricate the microgrooved Ti, and amine functionalization (silanization) was used to immobilize fibronectin on the titanium surfaces. Osteoblast differentiation and osteoblast marker gene expression were analyzed by means of alkaline phosphatase activity assay, extracellular calcium deposition assay, and quantitative real-time PCR. RESULTS. The conjugation of fibronectin on Ti significantly increased osteoblast differentiation in MSCs compared with non-conjugated Ti substrates. On the extracellular calcium deposition assays of MSCs at 21 days, an approximately two-fold increase in calcium concentration was observed on the etched 60-${\mu}m$-wide/10-${\mu}m$-deep microgrooved surface with fibronectin (E60/10FN) compared with the same surface without fibronectin (E60/10), and a more than four-fold increase in calcium concentration was observed on E60/10FN compared with the non-etched control (NE0) and etched control (E0) surfaces. Through a series of analyses to determine the expression of osteoblast marker genes, a significant increase in all the marker genes except type I collagen ${\alpha}1$ mRNA was seen with E60/10FN more than with any of the other groups, as compared with NE0. CONCLUSION. The FN-conjugated, microgrooved Ti substrate can provide an effective surface to promote osteoblast differentiation and osteoblast marker gene expression in MSCs.

The Effect of Photomodulation in Human Dermal Fibroblasts (피부 섬유아세포에서 광자극의 효과)

  • Kim, Mi Na;Kwak, Taek Jong;Kang, Nae Gyu;Lee, Sang Hwa;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Skin is exposed to sunlight or artificial indoor light on a daily. The reached solar light on the earth surface consist of 50% visible light and 45% infrared (IR) except for ultra violet (UV). The negative effects of UV including UVB and UVA have been steadily investigated within the last decades. However, little is known about the effects of visible or IR light. In this study, we irradiated human dermal fibroblasts using light emitting diode (LED) to investigate the optimal parameter for enhancing cell growth and collagen synthesis. We found that red of 630 nm and green of 520 nm enhance the cell proliferation, but irradiation with purple and blue light exerts toxic effects. To examine the response of irradiation time and light intensity on the fibroblasts, cells were exposed to red or green light with intensities from 0.05 to $0.75mW/cm^2$. Procollagen secretion was increased of 1.4 fold by 10 min irradiation, while 30 min treatment decreased the collagen synthesis of dermal fibroblasts. Treatment with red of $0.3mW/cm^2$ and green of 0.15 and $0.3mW/cm^2$ resulted in enhancement of collagen mRNA. Lastly, we investigated the combinatorial effect of red and green light on dermal fibroblasts. The sequential irradiation of red and green light is an efficient way for the purpose of the increase in the number of fibroblasts than single light treatment. On the other hand, the exposure of red light alone was more effective method for enhancing of collagen secretion. Our study showed that specific light parameters accelerated cell proliferation, gene expression and collagen secretion on human dermal fibroblasts. In conclusion, we demonstrate that light exposure with specific parameter has beneficial effects on the function of dermal fibroblasts, and suggests the possibility of its cosmetically and clinical application.

Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling

  • Yoo, Han-Seok;Chung, Kang-Hyun;Lee, Kwon-Jai;Kim, Dong-Hee;An, Jeung Hee
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.190-197
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Gallus gallus domesticus (GD) is a natural mutant breed of chicken in Korea with an atypical characterization of melanin in its tissue. This study investigated the effects of melanin extracts of GD on osteoblast differentiation and inhibition of osteoclast formation. MATERIALS/METHODS: The effects of the melanin extract of GD on human osteoblast MG-63 cell differentiation were examined by evaluating cell viability, osteoblast differentiation, and expression of osteoblast-specific transcription factors such as bone morphogenetic protein 2 (BMP-2), small mothers against decapentaplegic homologs 5 (SMAD5), runt-related transcription factor 2 (RUNX2), osteocalcin and type 1 collagen (COL-1) by reverse transcription-polymerase chain reaction and western blotting analysis. We investigated the inhibitory effect of melanin on the osteoclasts formation through tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains in Raw 264.7 cell. RESULTS: The melanin extract of GD was not cytotoxic to MG-63 cells at concentrations of $50-250{\mu}g/mL$. Alkaline phosphatase (ALP) activity and bone mineralization of melanin extract-treated cells increased in a dose-dependent manner from 50 to $250{\mu}g/mL$ and were 149% and 129% at $250{\mu}g/mL$ concentration, respectively (P < 0.05). The levels of BMP-2, osteocalcin, and COL-1 gene expression were significantly upregulated by 1.72-, 4.44-, and 2.12-fold in melanin-treated cells than in the control cells (P < 0.05). The levels of RUNX2 and SMAD5 proteins were higher in melanin-treated cells than in control vehicle-treated cells. The melanin extract attenuated the formation of receptor activator of nuclear factor kappa-B ligand-induced TRAP-positive multinucleated RAW 264.7 cells by 22%, and was 77% cytotoxic to RAW 264.7 macrophages at a concentration of $500{\mu}g/mL$. CONCLUSIONS: This study provides evidence that the melanin extract promoted osteoblast differentiation by activating BMP/SMADs/RUNX2 signaling and regulating transcription of osteogenic genes such as ALP, type I collagen, and osteocalcin. These results suggest that the effective osteoblastic differentiation induced by melanin extract from GD makes it potentially useful in maintaining bone health.

Anti-aging Effect of Asterosaponin P1 Isolated from Asterina pectinifera (별불가사리로부터 분리된 Asterosaponin P1의 항노화 효능)

  • Jin, Mu Hyun;Lee, So Young;Yeo, Hyerin;Kim, Hyo Jin;Chang, Yun Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.389-397
    • /
    • 2018
  • The starfish, Asterina pectinifera Muller and Troschel (Asterinidae) is an indigenous species commonly found in all coasts of Korea causes damages to shellfish farms. In order to exterminate A. pectinifera, they are dried and used as fertilizer. Although various studies have been conducted to create high added value from the retrieved A. pectinifera, their actual utilization is relatively low. Accordingly, this study aimed to find new practical uses of starfish by identifying useful ingredients for skin anti-aging. Two polyhydroxysteroids and one asterosaponin were isolated from the A. pectinifera. The structures of these compounds were identified as $5{\alpha}$-cholestane-$3{\beta},6{\alpha},7{\alpha},8,15{\alpha},16{\beta},26$-heptol, $5{\alpha}$-cholestane-$3{\beta},4{\beta},6{\alpha},7{\alpha},8,15{\beta},16{\beta},2$6-octol, and asterosaponin $P_1$ on the basis of chemical and spectroscopic analysis. Among these compounds, we have found that asterosaponin $P_1$ increased epidermal stem cell proliferation and the expression of hyaluronan synthase-2 and hyaluronan synthase-3 gene, which are enzymes that synthesize water-binding matrix hyaluronic acids in keratinocytes. In addition, asterosaponin $P_1$ increased synthesis of pro-collagen type I, a major dermal collagen in fibroblasts. As a result, asterosaponin $P_1$ isolated from A. pectinifera could be used as a useful cosmetic ingredient that improves skin symptoms accompanying skin aging.

Angiotensin Converting Enzyme Gene Polymorphism in Alport Syndrome (알포트증후군 환자에서 안지오텐신전환효소 유전자 다형성의 의의)

  • Kim Ji-Hong;Lee Jae-Seung;Kim Pyung-Kil
    • Childhood Kidney Diseases
    • /
    • v.8 no.1
    • /
    • pp.18-25
    • /
    • 2004
  • Purpose : Alport syndrome is clinically characterized by hereditary progressive nephritis causing ESRD with irregular thickening of the GBM and sensory neural hearing loss. The mutations of type IV collagen gene(COL4A5) located on the long arm of X chromosome is considered responsible for most of the structural abnormalities in the GBM of Alport patients. Since no definite clinical prognostic predictor has been reported in the disease yet, we designed this study to evaluate the significance of genetic polymorphism of the angiotensin converting enzyme in children with Alport syndrome as a prognostic factor for disease progression. Methods : ACE I/D genotype were examined by PCR amplification of the genomic DNA in 12 patients with Alport syndrome and 12 of their family members. Alport patients were divided into two groups; the conservative group, those who had preserved renal function for more than 10 years of age, the early CRF group, those who had progressed to CRF within 10 years of age. Results : The mean age of onset was $3.45{\pm}2.4$ years in the conservative group, $4.4{\pm}1.2$ years in the early CRF group. Sex ratios were 5:3 and 2:1 in each group. Among 12 cases of patients, 4 cases were in early CRF group and their mean duration of onset to CRF was 4.5 yews(8.9 years of age). Eight patients(67%) were in the conservative group and they had normal renal function for more than 10 years of age(mean duration of renal preservation was 10.6 years). The incidence of II type ACE gene were in 25.0%(3 cases), ID type in 41.7%(5 cases), DD type in 33.3%(4 cases). There was no significant difference between Alport patient and normal control(II type 44.3%, ID type 40.9%, DD type 14.8%). The incidence of DD type of early CRF group were higher than that of the conservative group(75% vs 12.5%)(p<0.05). There was no difference in ACE gene polymorphism between normal Alport family members and control group. Conclusion : Even though there was no significant difference of ACE polymorphism between Alport patients and the normal control group, the incidence of DD type is significantly increased in early CRF group which means DD type of ACE polymorphism has a possibility of being a predictor for early progression to CRF in Alport patients.

  • PDF

Regulation of cementoblast differentiation and mineralization using conditioned media of odontoblast (상아모세포의 조건배지를 이용한 백악모세포의 분화와 석회화 조절)

  • Moon, Sang-Won;Kim, Hye-Sun;Song, Hyun-Jung;Choi, Hong-Kyu;Park, Jong-Tae;Kim, Heung-Joong;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.385-396
    • /
    • 2006
  • For the regeneration of periodontal tissues, the microenvironment for new attachment of connective tissue fibers should be provided, At this point of view, cementum formation in root surface plays a key role for this new attachment. This study was performed to figure out which factor promotes differentiation of cementoblast Considering anatomical structure of tooth, we selected the cells which may affect the differentiation of cementoblast - Ameloblast, OD11&MDPC23 for odontoblasts, NIH3T3 for fibroblsts and MG63 for osteoblasts. And OCCM30 was selected for cementoblast cell line. Then, the cell lines were cultured respectively and transferred the conditioned media to OCCM30. To evaluate the result, Alizarin red S stain was proceeded for evaluation of mineralization. The subjected mRNA genes are bone sialoprotein(BSP), alkaline phosphate(ALP) , osteocalcin(OC), type I collagen(Col I), osteonectin(SPARC ; secreted protein acidic and rich in cysteine). Expression of the gene were analysed by RT-PCR, The results were as follows: 1. For alizarin red S staining, control OCCM30 didn't show any mineralized red nodules until 14 days. But red nodules started to appear from about 4 days in MDPC-OCCM30 & OD11-OCCM30. 2. For results of RT-PCR, ESP mRNAs of control-OCCM30 and others were expressed from 14 days, but in MDPC23-OCCM30 & OD11-OCCM30 from 4 days. Like this, the gene expression of MDPC23-OCCM30 & OD11-OCCM30 were detected much earlier than others. 3. For confirmation of odontoblast effect on cementoblast, conditioned media of osteoblasts(MG63) which is mineralized by producing matrix vesicles didn't affect on the mineralized nodule formation of cementoblasts(OCCM30). This suggest the possibility that cementoblast mineralization is regulated by specific factor in dentin matrix protein rather than matrix vesicles. Therefore, we proved that the dentin/odontoblast promotes differentiation/mineralization of cementoblasts. This new approach might hole promise as diverse possibilities for the regeneration of tissues after periodontal disease.