• 제목/요약/키워드: Type 1 collagen

검색결과 652건 처리시간 0.035초

다양한 세포외기질이 배양 골아세포의 이동에 미치는 영향 (The Effects of Various Extracellular Matrices on Motility of Cultured MC3T3-E1 Cell)

  • 박병윤;서상우;이원재;류창우;나동균;손현주;박종철
    • Archives of Plastic Surgery
    • /
    • 제32권2호
    • /
    • pp.143-148
    • /
    • 2005
  • Chemotactic migration of bone forming cell, osteoblast, is an important event during bone formation, bone remodeling, and fracture healing. Migration of cells is mediated by adhesion receptors, such as integrins, that link the cell to extracellular matrix ligands, type I collagen, fibronectin, laminin and depend on interaction between integrin and extracellular ligand. Our study was designed to investigate the effect of extracellular matrix like fibronectin, laminin, type I collagen on migration of osteoblast. Migration distance and speed of MC3T3-E1 cell on extracellular matrix-coated glass were measured for 24 hours using 0.01% type I collagen, 0.01% fibronectin, 100 microliter/ml laminin. The migration distance and speed of MC3T3-E1 cell was compared using a video-microscopy system. To determine migration speed, cells were viewed with a 4 phase- contrast lens and video recorded. Images were captured using a color CCD camera and saved in 8-bit full-color mode. The migration distance on 0.01% type I collagen or 0.01% fibronectin was longer than that on $100{\mu}l/ml$ laminin-coated glass. The migration speed on fibronectin-coated glass was 68 micrometer/hour which was fastest. The migration speed on type I collagen-coated glass was similar with that on fibronectin-coated glass. The latter two migration speeds were faster than that on no-coated glass. On the other hand, the average migration speed on laminin-coated glass was 37micrometer/hour and not different from that of control group. In conclusion, the extracelluar matrix ligands such as type I collagen and fibronectin seem to play an important role in cell migration. The type I collagen or fibronectin coated scaffold is more effective for migration of osteoblast in tissue engineering process.

Elastin Degradation and Collagen III Deficiency in the Superficial Temporal Arteries of Patients with Intracranial Aneurysms

  • Hwang, Chul-Yoon;Roh, Mi-Suk;Huh, Jae-Taeck
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권1호
    • /
    • pp.20-26
    • /
    • 2007
  • Objective : We present the difference of histopathologic changes of the internal elastic lamina (IEL) and collagen III in the superficial temporal artery (STA) between aneurysmal patients and non-aneurysmal patients. Also, the pathologic data with clinical features by comparative methods to validate the risk factor of the intracranial aneurysm are presented. Methods : Samples of the STA were harvested form 38 patients including aneurysmal and non-aneurysmal patients undergoing craniotomy. Paraffin-embedded sections were examined, using hematoxylin and eosin, van Giebson and mouse anti-collagen III staining techniques. Histopathological observations were ana lysed and correlated with clinical features such as presence of aneurysm, hypertension, age, and sex. Results : Twenty-seven patients had the intracranial aneurysm. Of these 24 patients were 50 years old or older. Nineteen patients had a history of hypertension. Twenty patients were female. Histopathological study demostrated the derangement of IEL and the deficiency of type III collagen were prominent in aneurysmal patients (p < 0.05). Fifty years old or older patients did not show correlation with the deficiency of type III collagen, but with the derangement of IEL (p < 0.05). The female sex was not correlated with the derangement of IEL but with the deficiency of type III collagen (p < 0.05). However, Hypertension was not correlated with these pathologic data. Conclusion : Patients with intracranial aneurysms have severe histopathologic changes of the arterial wall showing the derangement of IEL and the deficiency of type III collagen. In the clinico-pathologic study, the advanced age and female sex were considered as risk factors of the intracranial aneurysm.

Type I Collagen-induced Pro-MMP-2 Activation is Differentially Regulated by H-Ras and N-Ras in Human Breast Epithelial Cells

  • Kim, In-Young;Jeong, Seo-Jin;Kim, Eun-Sook;Kim, Seung-Hee;Moon, A-Ree
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.825-831
    • /
    • 2007
  • Tumor cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs), among which MMP-2 and MMP-9 are of central importance. We previously showed that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells in which the enhanced expression of MMP-2 was involved. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated resulting the 62 kDa active MMP-2. The present study investigated if H-Ras and/or N-Ras induces pro-MMP-2 activation of MCF10A cells when cultured in two-dimensional gel of type I collagen. Type I collagen induced activation of pro-MMP-2 only in H-Ras MCF10A cells but not in N-Ras MCF10A cells. Induction of active MMP-2 by type I collagen was suppressed by blocking integrin ${\alpha}2$, indicating the involvement of integrin signaling in pro-MMP-2 activation. Membrane-type (MT)1-MMP and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated by H-Ras but not by N-Ras in the type I collagen-coated gel, suggesting that H-Ras-specific up-regulation of MT1-MMP and TIMP-2 may lead to the activation of pro-MMP-2. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, these results may help understanding the mechanisms for the cell surface matrix-degrading potential which will be crucial to the prognosis and therapy of breast cancer metastasis.

Influence of moxibustion on collagen-induced arthritis in mice

  • Fang, Jian-Qiao;Aoki, Eri;Seto, Akira;Yu, Ying;Kasahara, Takako;Hisamitsu, Tadashi
    • 대한약침학회지
    • /
    • 제3권2호
    • /
    • pp.27-40
    • /
    • 2000
  • The influence of moxibustion, a traditional Chinese medical treatment, on type II collagen-induced arthritis (CIA) was examined in DBA/1J mice in vivo. Mice were immunized intradermally twice at the 3-week interval with bovine type II collagen (C Il). The main incidence of arthritis started about on day 30 and lasted to day 60 after the first immunization. Moxibustion with three different regimens, was applied at the acupoint equivalent to GV 4 every other day. Moxibustion, from day 0 to day 30 after the first immunization, suppressed the onset and development of arthritis, as well as anti-collagen antibody level. Treatment with moxibustion, from the day 31 to day 60, also resulted in a significant inhibition of progression of arthritis and production of anti-C II antibody. Thirdly we examined the influence of moxibustion on the established arthritis. Moxibustion given from day 61 to day 120, significantly but mildly decreased the anti-C II antibody level in diseased mice, while the bone erosion and joint destruction were not affected. These results indicate that moxibustion could prevent the incidence and attenuates the development of murine CIA.

I형 콜라겐지지체의 다양한 가교처리 방법이 연골막성 연골재생에 미치는 영향 (The Effect of Various Methods of Cross-linking in Type I Collagen Scaffold on Cartilage Regeneration)

  • 손대구;임중재;손경희;양은경
    • Archives of Plastic Surgery
    • /
    • 제33권6호
    • /
    • pp.723-731
    • /
    • 2006
  • Purpose: Collagen is the principal structural biomolecule in cartilage extracellular matrix, which makes it a logical target for cartilage engineering. In this study, porous type I collagen scaffolds were cross-linked using dehydrothermal(DHT) treatment and/or 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide(EDC), in the presence and absence of chondroitin-6-sulfate(CS) for cartilage regeneration. Methods: Cartilage defects were created in the proximal part of the ear of New Zealand rabbits. Four types of scaffolds(n=4) were inserted. The types included DHT cross-linked(Group 1), DHT and EDC cross- linked(Group 2), CS added DHT cross-linked(Group 3), and CS added DHT and EDC cross-linked(Group 4). Histomorphometric analysis and cartilage-specific gene expression of the reconstructed tissues were evaluated respectively 4, 8, and 12 weeks after implantation. Results: The largest quantity of regenerated cartilage was found in DHT cross-linked groups 1 and 3 in the 8th week and then decreased in the 12th week, while calcification increased. Calcification was observed from the 8th week and the area increased in the 12th week. Group 4 was treated with EDC cross-linking and CS, and the matrix did not degrade in the 12th week. Cartilage-specific type II collagen mRNA expression increased with time in all groups. Conclusion: CS did not increase chondrogenesis in all groups. EDC cross-linking may prevent chondrocyte infiltration from the perichondrium into the collagen scaffold.

Evaluation of the regenerative capacity of stem cells combined with bone graft material and collagen matrix using a rabbit calvarial defect model

  • Jun-Beom Park;InSoo Kim;Won Lee;Heesung Kim
    • Journal of Periodontal and Implant Science
    • /
    • 제53권6호
    • /
    • pp.467-477
    • /
    • 2023
  • Purpose: The purpose of this study was to evaluate the regenerative capacity of stem cells combined with bone graft material and a collagen matrix in rabbit calvarial defect models according to the type and form of the scaffolds, which included type I collagen matrix and synthetic bone. Methods: Mesenchymal stem cells (MSCs) were obtained from the periosteum of participants. Four symmetrical 6-mm-diameter circular defects were made in New Zealand white rabbits using a trephine drill. The defects were grafted with (1) group 1: synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×105 MSCs; (2) group 2: collagen matrix and 1×105 MSCs; (3) group 3: β-TCP/HA, collagen matrix covering β-TCP/HA, and 1×105 MSCs; or (4) group 4: β-TCP/HA, chipped collagen matrix mixed with β-TCP/HA, and 1×105 MSCs. Cellular viability and cell migration rates were analyzed. Results: Uneventful healing was achieved in all areas where the defects were made at 4 weeks, and no signs of infection were identified during the healing period or at the time of retrieval. New bone formation was more evident in groups 3 and 4 than in the other groups. A densitometric analysis of the calvarium at 8 weeks post-surgery showed the highest values in group 3. Conclusions: This study showed that the highest regeneration was found when the stem cells were applied to synthetic bone along with a collagen matrix.

PANC-1세포에서 발현된 재조합 MT1-MMP의 효소 활성 (Activities of Recombinant MT1-MMP Expressed in PANC-1 Cells.)

  • 김혜난;정혜신
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.422-425
    • /
    • 2008
  • Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-associated zinc-dependent endoproteinase involved in extracellular matrix remodeling. MT1-MMP hydrolyzes ECM proteins like collagen and is involved in cancer cell migration and metastasis. Caveolins are integral membrane proteins and play a role in formation of caveolae, specialized membrane microdomains involved in clathrin-independent endocytosis. Recombinant MT1-MMP was transiently expressed in PANC-1 cells. Cells expressing recombinant MT1-MMP were able to hydrolyze collagen and migrate on collagen coated trans-well. Both subjacent collagen degradation and the cell migration conferred by recombinant MT1-MMP were inhibited by co-transfection of plasmids containing caveolin-1 cDNA. The results support that MT1-MMP is localized in lipid raft of the membrane and MT1-MMP activities in invasive cells could be inhibited by caveolin.

Effect of Type I Collagen on Hydroxyapatite and Tricalcium Phosphate Mixtures in Rat Calvarial Bony Defects

  • Kim, Jung-Hwan;Kim, Soung-Min;Kim, Ji-Hyuck;Kwon, Kwang-Jun;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권1호
    • /
    • pp.36-48
    • /
    • 2008
  • To repair bone defects in the oral and maxillofacial field, bone grafts including autografts, allografts, and artificial bone are used in clinical dentistry despite several disadvantages. The purpose of this study was to evaluate new bone formation and healing in rat calvarial bone defects using hydroxyapatite (HA, $Ca_{10}[PO_4]_6[OH]_2,\;Bongros^{(R)}$, Bio@ Co., KOREA) and tricalcium phosphate (${\beta}-TCP,\;Ca_3[PO_4]_2$, Sigma-Aldrich Co., USA) mixed at various ratios. Additionally, this study evaluated the effects of type I collagen (Rat tail, BD Biosciences Co., Sweden) as a basement membrane organic matrix. A total of twenty, 8-week-old, male Sprague-Dawley rats, weighing 250-300g, were divided equally into a control group (n=2) and nine experimental groups (n=2, each). Bilateral, standardized transosseous circular calvarial defects, 5.0 mm in diameter, were created. In each experimental group, the defect was filled with HA and TCP at a ratio of 100:0, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, and 0:100 with or without type I collagen. Rats were sacrificed 4 and 8 weeks post-operation for radiographic (standardized plain film, Kodak Co., USA), histomorphologic (H&E [Hematoxylin and Eosin], MT [Masson Trichrome]), immunohistochemical staining (for BMP-2, -4, VEGF, and vWF), and elementary analysis (Atomic absorption spectrophotometer, Perkin Elmer AAnalyst $100^{(R)}$). As the HA proportion increased, denser radiopacity was seen in most groups at 4 and 8 weeks. In general radiopacity in type I collagen groups was greater than the non-collagen groups, especially in the 100% HA group at 8 weeks. No new bone formation was seen in calvarial defects in any group at 4 weeks. Bridging bone formation from the defect margin was marked at 8 weeks in most type I collagen groups. Although immunohistochemical findings with BMP-2, -4, and VEGF were not significantly different, marked vWF immunoreactivity was present. vWF staining was especially strong in endothelial cells in newly formed bone margins in the 100:0, 80:20, and 70:30 ratio type I collagen groups at 8 weeks. The calcium compositions from the elementary analysis were not statistically significant. Many types of artificial bone have been used as bone graft materials, but most of them can only be applied as an inorganic material. This study confirmed improved bony regeneration by adding organic type I collagen to inorganic HA and TCP mixtures. Therefore, these new artificial bone graft materials, which are under strict storage and distribution systems, will be suggested to be available to clinical dentistry demands.

3-Amino Propane Phosphoric Acid (3-APPA) : 새로운 피부 노화 억제 물질 (3-Amino Propane Phosphoric Acid (3-APPA) : A Novel Anti-Aging Substance)

  • 조윤기;변영훈;선보경;황재성;이보섭;김종일
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 1996년도 4차 심포지움(Skin Biology Efficacy)
    • /
    • pp.52-67
    • /
    • 1996
  • 새로운 노화방지 물질로 개발한 3-APPA가 노화에 의해 야기되는 여러 변화들, 특히 세포 증식, 유전자 수준 및 단백질 수준에서의 collagen의 생합성 변화, 면역조직화학염색을 이용한 collagen 생합성의 변화등을 세포배양 및 동물실험을 통하여 측정하였다. MTT assay를 이용한 인체 피부 섬유아세포의 증식 실험에서 3-APPA는 무처치군에 비교해서 최고 2배의 섬유아세포 증식 효능을 나타내었으며, $^3$[H]-proline incorporation 방법을 이용한 단층세포 배양 및 3차원 dermal equivalent 섬유아세포 배양에서 무처치군 및 vitamin C 처리군에 비해 최고 1.5배의 collagen 생합성 증가를 나타내었다. 그러나 type I alpha-procollagen mRNA expression에는 영향을 미치지 않는 것으로 나타났다. H&E 염색을 이용한 hairless mice의 피부에 대한 형태학적 변화 및 type I pM procollagen antibody를 이용한 면역조직화학염색에서, 3-APPA는 collagen 생합성을 증가시키는 것으로 나타났다. 이상의 결과에서 3-APPA는 섬유아세포 배양 및 hairless mouse를 이용한 실험에서 피부 섬유아세포 증식을 촉진시키며 collagen 생합성을 증가시켜 피부노화를 억제 할 수 있는 물질임을 밝혔다.

  • PDF

Extraction and characterization of pepsin-soluble collagen from different mantis shrimp species

  • Hiransuchalert, Rachanimuk;Oonwiset, Nakaweerada;Imarom, Yolrawee;Chindudsadeegul, Parinya;Laongmanee, Penchan;Arnupapboon, Sukchai
    • Fisheries and Aquatic Sciences
    • /
    • 제24권12호
    • /
    • pp.406-414
    • /
    • 2021
  • The objective of this study was to investigate the yield and characteristics of collagen protein extracted from the muscle of four different species of mantis shrimp: Miyakella nepa, Harpiosquilla harpax, Erugosquilla woodmasoni, and Odontodactylus cultrifer. Mantis shrimp muscle was extracted by using a pepsin-solubilization technique, with 0.5 M acetic acid and 5% pepsin enzyme. The highest collagen yield was from M. nepa muscle (0.478 ± 0.06%), which was significantly greater (p < 0.05) than that from H. harpax, O. cultrifer, and E. woodmasoni (0.313 ± 0.03%, 0.123 ± 0.02%, and 0.015 ± 0.00%, respectively). The freeze-dried collagen appeared as thin fibers, and formed an opaque film. The pepsin-soluble collagen (PSC) from four mantis shrimp species was analyzed by gel electrophoresis. The results showed that all species of mantis shrimp contained type I collagen, consisting of β, α1, and α2 subunits with average molecular weights of 250, 145, and 118 kDa, respectively. The study of the solubility of collagen showed that, for NaCl, collagen had the highest relative solubility in 2% NaCl (80.20 ± 4.95%). In contrast, the solubility decreased at higher NaCl concentrations. However, in terms of pH, collagen had the highest relative solubility at pH 3 (91.32 ± 5.14%), and its solubility decreased at higher pH. FT-IR spectroscopy was used to compare the collagen with a model compound. Five wavenumbers in the spectrum for model collagen were identified: Amide A (3,406-3,421 cm-1), amide B (2,916-2,940 cm-1), amide I (1,639-1,640 cm-1), amide II (1,539-1,570 cm-1), and amide III (1,234-1,250 cm-1).