• 제목/요약/키워드: Two-surface model

검색결과 2,268건 처리시간 0.036초

2차원 클러스터 응집모형을 통한 표면 2상공존 현상에 대한 이론적 분석 (A Theoretical Analysis of Two Phase Existence Phenomena on Surface with the Two Dimensional Cluster Aggregation Model)

  • 최성율
    • 한국전자통신학회논문지
    • /
    • 제8권9호
    • /
    • pp.1365-1371
    • /
    • 2013
  • 표면상에서의 흡착현상 중, 특정한 압력에서 흡착량이 불연속적으로 급격하게 증가하는 2상 공존현상을 이론적으로 설명하기 위하여 2차원 클러스트 응집모형을 도입하였다. 이 2차원 클러스트 응집모형에 기초적인 통계열역학과 미정계수법을 적용하여 흡착등온식을 유도하였으며, 유도된 흡착등온식은 표면흡착에서의 2상 공존현상이 흡착입자들 간의 강한 인력에 의한 것임을 정성적으로 잘 보여주었다.

수정이중면 모델의 타당성 분석 (Validation of Modified Two-Surface Model)

  • 김대규
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2007년도 춘계학술발표논문집
    • /
    • pp.276-278
    • /
    • 2007
  • In this study the modified Two-Surface model was validated by comparing the model prediction with the results of the experiments carefully performed. It was seen that the modified Two-Surface model was capable of more realistically simulating the behaviors of clayey specimens, specially over-consolidated specimens. This is attributed mainly to the smooth transition rule from the elastic to elastoplastic regions.

  • PDF

치면 프로파일 모델에 따른 기어 치면 내부의 응력 분포 (Sub­surface Stress Distribution beneath the Contact Surface of the Gear Teeth for Two Profile Models)

  • 구영필;오명석;김형자;김영대
    • Tribology and Lubricants
    • /
    • 제19권6호
    • /
    • pp.357-364
    • /
    • 2003
  • The sub­surface stress field beneath the gear's contact surface caused by the contact pressure in lubricated condition has been calculated. To evaluate the influence of the clearance shape on the stress field, two kinds of tooth profile models were chosen. One is the conventional cylinder contact model and the other is the new numerical model. Love's rectangular patch solution was used to obtain the sub­surface stress field. The analysis results show that the sub­surface stress is quite dependent on both the contact pressure and the profile model. The maximum effective stress of the new model is lower than that of the old model. The depth where the maximum effective stress occurs in the new model is not proportional to the intensity of the external load.

확률론에 의환 Double Surface와 Single Surface 구성모델의 변형을 예측 정도의 평가 (Probabilistic Evaluation on Prediction Accuracy of the Strains by Double Surface and Single Surface Constitutive Model)

  • 정진섭;송용선;김찬기
    • 대한토목학회논문집
    • /
    • 제14권1호
    • /
    • pp.217-229
    • /
    • 1994
  • Lade의 Double surface와 Single surface 구성모델의 변형을 예측의 정도를 비교평가하기 위하여 백마강모래로 두 구성식의 토질매개변수를 다수 구하고 각 변수의 통계치를 분석하였다. 이 통계치를 이용하여 일반함수의 변동계수를 산정하는 1계근사법으로 두 구성모델의 변형율에 대한 변동계수를 해석하였다. 그 결과 각 토질매개변수의 결정에는 Single surface 구성모델의 변수가 Double surface 구성모델의 변수보다 변동계수가 작게 나타나므로 매개변수결정에 일관성이 있는 반면 확률론으로 해석한 축 변형율의 변동계수는 Double surface 구성모텔에서 안정된 값을 나타내고 있으며, 체적 변형율에서는 두 구성모델 모두 안정된 해석결과를 보인다. 이는 두 구성모델의 특성을 비교한 다른 연구 결과와 일치하는 경향으로서 확률론에 의한 구성식의 평가가 효과적인 수단임을 알 수 있었다.

  • PDF

Prediction of terminal density through a two-surface plasticity model

  • Won, Jongmuk;Kim, Jongchan;Park, Junghee
    • Geomechanics and Engineering
    • /
    • 제23권5호
    • /
    • pp.493-502
    • /
    • 2020
  • The prediction of soil response under repetitive mechanical loadings remains challenging in geotechnical engineering applications. Modeling the cyclic soil response requires a robust model validation with an experimental dataset. This study proposes a unique method adopting linearity of model constant with the number of cycles. The model allows the prediction of the terminal density of sediments when subjected to repetitive changes in pore-fluid pressure based on the two-surface plasticity. Model simulations are analyzed in combination with an experimental dataset of sandy sediments when subjected to repetitive changes in pore fluid pressure under constant deviatoric stress conditions. The results show that the modified plastic moduli in the two-surface plasticity model appear to be critical for determining the terminal density. The methodology introduced in this study is expected to contribute to the prediction of the terminal density and the evolution of shear strain at given repetitive loading conditions.

Reduction of the Wet Surface Heat Transfer Coefficients from Experimental Data

  • Kim, Nae-Hyun;Sim, Yong-Sub
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권1호
    • /
    • pp.37-49
    • /
    • 2004
  • Four different data reduction methods for the heat transfer coefficients from experimental data under dehumidifying conditions are compared. The four methods consist of two heat and mass transfer models and two fin efficiency models. Data are obtained from two heat exchanger samples having plain fins or wave fins. Comparison of the reduced heat transfer coefficients revealed that the single potential heat and mass transfer model yielded the humidity-independent heat transfer coefficients. Two fin efficiency models-enthalpy model and humidity model-yielded approximately the same fin efficiencies, and accordingly approximately the same heat transfer coefficients. The heat transfer coefficients under wet conditions were approximately the same as those of the dry conditions for the plain fin configuration. For the wave fin configuration, however, wet surface heat transfer coefficients were approximately 12% higher. The pressure drops of the wet surface were 10% to 45% larger than those of the dry surface.

Steel Surface Defect Detection using the RetinaNet Detection Model

  • Sharma, Mansi;Lim, Jong-Tae;Chae, Yi-Geun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권2호
    • /
    • pp.136-146
    • /
    • 2022
  • Some surface defects make the weak quality of steel materials. To limit these defects, we advocate a one-stage detector model RetinaNet among diverse detection algorithms in deep learning. There are several backbones in the RetinaNet model. We acknowledged two backbones, which are ResNet50 and VGG19. To validate our model, we compared and analyzed several traditional models, one-stage models like YOLO and SSD models and two-stage models like Faster-RCNN, EDDN, and Xception models, with simulations based on steel individual classes. We also performed the correlation of the time factor between one-stage and two-stage models. Comparative analysis shows that the proposed model achieves excellent results on the dataset of the Northeastern University surface defect detection dataset. We would like to work on different backbones to check the efficiency of the model for real world, increasing the datasets through augmentation and focus on improving our limitation.

복합곡면의 다면체 곡면 근사 (Approximation of a compound surface to polyhedral model)

  • 김영일;전차수;조규갑
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.100-103
    • /
    • 1996
  • Presented in this study is an algorithmic procedure to obtain polyhedral model from a compound surface. The compound surface in this study denotes a collection of trimmed surfaces without topological relations. The procedure consists of two main modules: CAD data interface, and surface conversion to polyhedral model. The interface module gets geometric information from CAD databases, and makes topological information by scanning the geometric information. We are investigating CATIA system as a data source system. In the surface conversion module, a shell(compound surface with topological information) is approximated to a triangular-faceted polyhedral surface model through node sampling and triangulation steps. The obtained polyhedral model should obey the vertex-to-vertex rule and meet tolerance requirements. Since the polyhedral model has a simple data structure and geometry processing for it is very efficient and robust, the polyhedral model can be used in various applications, such as surface rendering in computer graphics, FEM model for engineering analysis, CAPP for surface machining, data generation for SLA, and NC tool path generation.

  • PDF

2차원 고양력장치의 플랩 형상 및 위치 최적화 (Optimization of Flap Shape and Position for Two-dimensional High Lift Device)

  • 박영민;강형민;정진덕;이해창
    • 항공우주시스템공학회지
    • /
    • 제7권3호
    • /
    • pp.1-6
    • /
    • 2013
  • Numerical optimization of two dimensional high lift configuration was performed with flow solver and optimization method based on RSM(Response Surface Model). Navier-Stokes solver with Spalart-Allmaras turbulence model was selected for the simulation of highly complex and separated flows on the flap. For the simultaneous optimization of both flap shape and setting (gap/overlap), 10 design variables (eight variables for flap shape variation and two variables for flap setting) were chosen. In order to generate the response surface model, 128 experimental points were selected for 10 design variables. The objective function considering maximum lift coefficient, lift to drag ratio and lift coefficient at specific angle of attack was selected to reduce flow separation on the flap surface. The present method was applied to two dimensional fowler flap in landing configuration. After applying the present method, it was shown that the optimized high lift configuration had less flow separation on the flap surface and lift to drag ratio was suppressed over entire angle of attack range.

구간해석방법을 통한 새로운 비구형 입자성장해석 모델 (A New Model for the Analysis of Non-spherical Particle Growth Using the Sectional Method)

  • 정재인;최만수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.416-421
    • /
    • 2000
  • We have developed a simple model for describing the non-spherical particle growth phenomena using modified 1-dimensional sectional method. In this model, we solve simultaneously particle volume and surface area conservation sectional equations which consider particles' irregularities. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. We compared this model with a simple monodisperse-assumed model and more rigorous two dimensional sectional model. For the comparison, we simulated silica and titania particle formation and growth in a constant temperature reactor environment. This new model shows a good agreement with the detailed two dimensional sectional model in total number concentration, primary particle size. The present model can also successfully predict particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

  • PDF