• 제목/요약/키워드: Two-surface Model

검색결과 2,276건 처리시간 0.029초

표면막과 표면거칠기가 접촉 저항에 미치는 영향 (Effect of Surface Film and Surface Roughness on Contact Resistance)

  • 이현철;이보라;유용훈;조용주
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.16-23
    • /
    • 2019
  • In this study, we aim to analyze the effects of both contact layer properties and surface roughness on contact resistance. The contact has a great influence on performance in terms of electrical conduction and heat transfer. The two biggest factors determining contact resistance are the presence of surface roughness and the surface layer. For this reason we calculated the contact resistance by considering both factors simultaneously. The model of this study to calculate contact resistance is as follows. First, the three representative surface parameters for the GW model are obtained by Nayak's random process. Then, the apparent contact area, real contact area, and contact number of asperities are calculated using the GW model with the surface parameters. The contact resistance of a single surface layer is calculated using Mikic's constriction equation. The total contact resistance is approximated by the parallel connection between the same asperity contact resistances. The results of this study are as follows. The appropriate thickness with reduction effect for contact resistance is determined according to the difference in conductivity between the base layer and surface layer. It was confirmed that the standard deviation of surface roughness has the greatest influence on surface roughness parameters. The results of this study will be useful for selecting the surface material and surface roughness when the design considering the contact resistance is needed.

지표 에너지 수지에 미치는 구름의 복사 역할 (Radiative Role of Clouds on the Earth Surface Energy Balance)

  • 홍성철;정일웅;김형진;이재범;오성남
    • 한국환경과학회지
    • /
    • 제16권3호
    • /
    • pp.261-267
    • /
    • 2007
  • In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

Histomorphometric Analysis of Two Types of Coated Implants : a Preliminary Study Using the Rabbit Tibia Model

  • Yeo, In-Sung;Lee, Hyo-Jung
    • Journal of Korean Dental Science
    • /
    • 제2권1호
    • /
    • pp.28-30
    • /
    • 2009
  • Purpose : The purpose of this pilot experiment was to evaluate early bone response in two types of coated implants using the rabbit tibia model. Materials and Methods : Screw type titanium implants manufactured with a calcium metaphosphate (CMP) coating and hydroxyapatite (HA) coating were placed in the tibiae of 3 New Zealand White rabbits. The bone responses at 2 weeks after insertion were evaluated and compared by histomorphometry. Results : There was no significant difference in bone-to-implant contact between the groups (P>.05). However, some qualitative differences on histologic views were found. Conclusions : CMP-coating is suggested to be the preferred candidate for fast osseointegration over HAcoating.

  • PDF

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • 비파괴검사학회지
    • /
    • 제33권3호
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

속도 슬립모델 적용을 통한 마이크로 유체 시뮬레이션용 FEM 수치 코드 개발 (IMPLEMENTATION OF VELOCITY SLIP MODELS IN A FINITE ELEMENT NUMERICAL CODE FOR MICROSCALE FLUID SIMULATIONS)

  • ;명노신
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.46-51
    • /
    • 2009
  • The slip effect from the molecular interaction between fluid particles and solid surface atoms plays a key role in microscale fluid transport and heat transfer since the relative importance of surface forces increases as the size of the system decreases to the microscale. There exist two models to describe the slip effect: the Maxwell slip model in which the slip correction is made on the basis of the degree of shear stress near the wall surface and the Langmuir slip model based on a theory of adsorption of gases on solids. In this study, as the first step towards developing a general purpose numerical code of the compressible Navier-Stokes equations for computational simulations of microscale fluid flow and heat transfer, two slip models are implemented into a finite element numerical code of a simplified equation. In addition, a pressure-driven gas flow in a microchannel is investigated by the numerical code in order to validate numerical results.

Modeling Implied Volatility Surfaces Using Two-dimensional Cubic Spline with Estimated Grid Points

  • Yang, Seung-Ho;Lee, Jae-wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • 제9권4호
    • /
    • pp.323-338
    • /
    • 2010
  • In this paper, we introduce the implied volatility from Black-Scholes model and suggest a model for constructing implied volatility surfaces by using the two-dimensional cubic (bi-cubic) spline. In order to utilize a spline method, we acquire grid (knot) points. To this end, we first extract implied volatility curves weighted by trading contracts from market option data and calculate grid points from the extracted curves. At this time, we consider several conditions to avoid arbitrage opportunity. Then, we establish an implied volatility surface, making use of the two-dimensional cubic spline method with previously estimated grid points. The method is shown to satisfy several properties of the implied volatility surface (smile, skew, and flattening) as well as avoid the arbitrage opportunity caused by simple match with market data. To show the merits of our proposed method, we conduct simulations on market data of S&P500 index European options with reasonable and acceptable results.

Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges

  • Wang, Tong;Xie, Xu;Shen, Chi;Tang, Zhanzhan
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1089-1109
    • /
    • 2016
  • Modified two-surface model (M2SM) is one of the steel elasto-plastic hysteretic constitutive models that consider both analysis accuracy and efficiency. However, when M2SM is used for complex strain history, sometimes the results are irrational due to the limitation of stress-strain path judgment. In this paper, the defect of M2SM was re-modified by improving the judgment of stress-strain paths. The accuracy and applicability of the improved method were verified on both material and structural level. Based on this improvement, the nonlinear time-history analysis was carried out for a deck-through steel arch bridge with a 200 m-long span under the ground motions of Chi-Chi earthquake and Niigata earthquake. In the analysis, we compared the results obtained by hysteretic constitutive models of improved two-surface model (I2SM) presented in this paper, M2SM and the bilinear kinematic hardening model (BKHM). Results show that, although the analysis precision of displacement response of different steel hysteretic models differs little from each other, the stress-strain responses of the structure are affected by steel hysteretic models apparently. The difference between the stress-strain responses obtained by I2SM and M2SM cannot be neglected. In significantly damaged areas, BKHM gives smaller stress result and obviously different strain response compared with I2SM and M2SM, and tends to overestimate the effect of hysteretic energy dissipation. Moreover, at some position with severe damage, BKHM may underestimate the size of seismic damaged areas. Different steel hysteretic models also have influences on structural damage evaluation results based on deformation behavior and low cycle fatigue, and may lead to completely different judgment of failure, especially in severely damaged areas.

Two-temperature thermoelastic surface waves in micropolar thermoelastic media via dual-phase-lag model

  • Abouelregal, A.E.;Zenkour, A.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.711-727
    • /
    • 2017
  • This article is concerned with a two-dimensional problem of micropolar generalized thermoelasticity for a half-space whose surface is traction-free and the conductive temperature at the surface of the half-space is known. Theory of two-temperature generalized thermoelasticity with phase lags using the normal mode analysis is used to solve the present problem. The formulas of conductive and mechanical temperatures, displacement, micro-rotation, stresses and couple stresses are obtained. The considered quantities are illustrated graphically and their behaviors are discussed with suitable comparisons. The present results are compared with those obtained according to one temperature theory. It is concluded that both conductive heat wave and thermodynamical heat wave should be separated. The two-temperature theory describes the behavior of particles of elastic body more real than one-temperature theory.

Investigation of aerosol resuspension model based on random contact with rough surface

  • Liwen He;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.989-998
    • /
    • 2023
  • Under nuclear reactor severe accidents, the resuspension of radioactive aerosol may occur in the containment due to the disturbing airflow generated by hydrogen combustion, hydrogen explosion and containment depressurization resulting in the increase of radioactive source term in the containment. In this paper, for containment conditions, by considering the contact between particle and rough deposition surface, the distribution of the distance between two contact points of particle and deposition surface, rolling and lifting separation mechanism, resuspension model based on random contact with rough surface (RRCR) is established. Subsequently, the detailed torque and force analysis is carried out, which indicates that particles are more easily resuspended by rolling under low disturbing airflow velocity. The simulation result is compared with the experimental result and the prediction of different simulation methods, the RRCR model shows equivalent and better predictive ability, which can be applicable for simulation of aerosol resuspension in containment during severe accident.

성층화된 유체 내에서 내부파와 표면파의 파형 변화 실험을 위한 수치적 연구 (Numerical Study for Experiment on Wave Pattern of Internal Wave and Surface Wave in Stratified Fluid)

  • 이주한;김관우;백광준;구원철;김영규
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.236-244
    • /
    • 2019
  • Internal waves occur at the interface between two layers caused by a seawater density difference. The internal waves generated by a body moving in a two-layer fluid are also related to the generation of surface waves because of their interaction. In these complex flow phenomena, the experimental measurements and experimental set-up for the wave patterns of the internal waves and surface waves are very difficult to perform in a laboratory. Therefore, studies have mainly been carried out using numerical analysis. However, model tests are needed to evaluate the accuracy of numerical models. In this study, the various experimental conditions were evaluated using CFD simulations before experiments to measure the wave patterns of the internal waves and surface waves in a stratified two-layer fluid. The numerical simulation conditions included variations in the densities of the fluids, depth of the two-layer fluid, and moving speed of the underwater body.