• Title/Summary/Keyword: Two-step optimization

Search Result 246, Processing Time 0.034 seconds

A Max-Min Ant Colony Optimization for Undirected Steiner Tree Problem in Graphs (스타이너 트리 문제를 위한 Mar-Min Ant Colony Optimization)

  • Seo, Min-Seok;Kim, Dae-Cheol
    • Korean Management Science Review
    • /
    • v.26 no.1
    • /
    • pp.65-76
    • /
    • 2009
  • The undirected Steiner tree problem in graphs is known to be NP-hard. The objective of this problem is to find a shortest tree containing a subset of nodes, called terminal nodes. This paper proposes a method based on a two-step procedure to solve this problem efficiently. In the first step. graph reduction rules eliminate useless nodes and edges which do not contribute to make an optimal solution. In the second step, a max-min ant colony optimization combined with Prim's algorithm is developed to solve the reduced problem. The proposed algorithm is tested in the sets of standard test problems. The results show that the algorithm efficiently presents very correct solutions to the benchmark problems.

An Interactive Process Capability-Based Approach to Multi-Response Surface Optimization (대화식 절차를 활용한 공정능력지수 기반 다중반응표면 최적화)

  • Jeong, In-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.2
    • /
    • pp.191-207
    • /
    • 2017
  • Purpose: To develop an interactive version of the conventional process capability-based approach, called 'Interactive Process Capability-Based Approach (IPCA)' in multi-response surface optimization to obtain a satisfactory compromise which incorporates a decision maker(DM)'s preference information precisely. Methods: The proposed IPCA consists of 4 steps. Step 1 is to obtain the estimated process capability indices and initialize the parameters. Step 2 is to maximize the overall process capability index. Step 3 is to evaluate the optimization results. If all the responses are satisfactory, the procedure stops with the most preferred compromise solution. Otherwise, it moves to Step 4. Step 4 is to adjust the preference parameters. The adjustment can be made in two modes: relaxation and tightening. The relaxation is to make the importance of one of the satisfactory responses lower, which is implemented by decreasing its weight. The tightening is to make the importance of one of the unsatisfactory responses higher, which is implemented by increasing its weight. Then, the procedure goes back to Step 2. If there is no response to be adjusted, it stops with the unsatisfactory compromise solution. Results: The proposed IPCA was illustrated through a multi-response surface problem, colloidal gas aphrons problem. The illustration shows that it can generate a satisfactory compromise through an interactive procedure which enables the DM to provide his or her preference information conveniently. Conclusion: The proposed IPCA has two major advantages. One is to obtain a satisfactory compromise which is faithful to the DM preference structure. The other is to make the DM's participation in the interactive procedure easier by using the process capability index in judging satisfaction/unsatisfaction. The process capability index is very familiar with quality practitioners as well as indicates the process performance levels numerically.

An Ant Colony Optimization Algorithm to Solve Steiner Tree Problem (스타이너 트리 문제를 위한 Ant Colony Optimization 알고리즘의 개발)

  • Seo, Min-Seok;Kim, Dae-Cheol
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.3
    • /
    • pp.17-28
    • /
    • 2008
  • The Steiner arborescence problem is known to be NP-hard. The objective of this problem is to find a minimal Steiner tree which starts from a designated node and spans all given terminal nodes. This paper proposes a method based on a two-step procedure to solve this problem efficiently. In the first step, graph reduction rules eliminate useless nodes and arcs which do not contribute to make an optimal solution. In the second step. ant colony algorithm with use of Prim's algorithm is used to solve the Steiner arborescence problem in the reduced graph. The proposed method based on a two-step procedure is tested in the five test problems. The results show that this method finds the optimal solutions to the tested problems within 50 seconds. The algorithm can be applied to undirected Steiner tree problems with minor changes. 18 problems taken from Beasley are used to compare the performances of the proposed algorithm and Singh et al.'s algorithm. The results show that the proposed algorithm generates better solutions than the algorithm compared.

Shape design for viscoelastic vibration isolators to minimize rotational stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.343-347
    • /
    • 2008
  • Design of shape for visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is frequently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs. ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape. where density of either 0 or 1 for finite elements is used for physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure will be presented for a mount of an air-conditioner compressor system and the effectiveness will be discussed.

  • PDF

Shape Design for Viscoelastic Vibration Isolators to Minimize Rotational Stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1250-1255
    • /
    • 2008
  • Design of shape fur visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is fi?equently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs, ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape, where density of either 0 or 1 for finite elements is used fur physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure is presented fur a mount of an air-conditioner compressor system and the effectiveness is discussed.

An Enhanced Genetic Algorithm for Optimization of Multimodal (다봉성 함수의 최적화를 위한 향상된 유전알고리듬의 제안)

  • 김영찬;양보석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.373-378
    • /
    • 2001
  • The optimization method based on an enhanced genetic algorithms is for multimodal function optimization in this paper. This method is consisted of two main steps. The first step is a global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide the similarity between individuals, and to research the optimum solutions by single point method in reconstructive search space. Four numerical examples are also presented in this papers to comparing with conventional methods.

  • PDF

Optimal Placement of Strain Gauge for Vibration Measurement for Fan Blade (블레이드 진동측정을 위한 스트레인 게이지 설치위치 최적화)

  • Choi ByeongKeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.819-826
    • /
    • 2004
  • A multi-step optimum strategy for the selection of the locations and directions of strain gauges is proposed in this paper to capture at best the modal response of blade in a series of modes on fan blades. It is consist of three steps including two pass reduction step, genetic algorithm and fine optimization to find the locations-directions of strain gauges. The optimization is based upon the maximum signal-to-noise ratio(SNR) of measured strain values with respect to the inherent system measurement noise, the mispositioning of the gauge in location and gauge failure. Optimal gauge positions for a fan blade is analyzed to prove the effectiveness of the multi-step optimum methodology and to investigate the effects of the considering parameters such as the mispositioning level, the probability of gauge failure, and the number of gauges on the optimal strain gauge position.

Evaluation of Two Lagrangian Dual Optimization Algorithms for Large-Scale Unit Commitment Problems

  • Fan, Wen;Liao, Yuan;Lee, Jong-Beom;Kim, Yong-Kab
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • Lagrangian relaxation is the most widely adopted method for solving unit commitment (UC) problems. It consists of two steps: dual optimization and primal feasible solution construction. The dual optimization step is crucial in determining the overall performance of the solution. This paper intends to evaluate two dual optimization methods - one based on subgradient (SG) and the other based on the cutting plane. Large-scale UC problems with hundreds of thousands of variables and constraints have been generated for evaluation purposes. It is found that the evaluated SG method yields very promising results.

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

A two-step method for the optimum design of trusses with commercially available sections

  • Oral, Suha;Uz, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • A two-step method is presented for the optimum design of trusses with available sections under stress and Euler buckling constraints. The shape design of the truss is used as a means to convert the discrete solution into a continuous one. In the first step of the method, a continuous solution is obtained by sizing and shape design using an approximate polynomial expression for the buckling coefficients. In the second step, the member sizes obtained are changed to the nearest available sections and the truss is reconfigured by using the exact values for the buckling coefficients. The optimizer used is based on the sequential quadratic programming and the gradients are evaluated in closed form. The method is illustrated by two numerical examples.