Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.
Noise band removal is a crucial step before spectral matching since the noise bands can distort the typical shape of spectral reflectance, leading to degradation on the matching results. This paper proposes a statistical noise band removal method for hyperspectral data using the correlation coefficient between two bands. The correlation coefficient measures the strength and direction of a linear relationship between two random variables. Considering each band of the hyperspectral data as a random variable, the correlation between two signal bands is high; existence of a noisy band will produce a low correlation due to ill-correlativeness and undirected ness. The unsupervised k-nearest neighbor clustering method is implemented in accordance with three well-accepted spectral matching measures, namely ED, SAM and SID in order to evaluate the validation of the proposed method. This paper also proposes a hierarchical scheme of combining those measures. Finally, a separability assessment based on the between-class and the within-class scatter matrices is followed to evaluate the applicability of the proposed noise band removal method. Also, the paper brings out a comparison for spectral matching measures. The experimental results conducted on a 228-band hyperspectral data show that while the SAM measure is rather resistant, the performance of SID measure is more sensitive to noise.
본 연구에서는 농촌관광 방문객에게 제공되는 편의시설을 유형화하고 어떤 특징을 가진 방문객이 어떤 편의시설을 선호하는지를 규명하기 위한 방법과 그 분석결과를 제시하였다. 이를 위하여 우선 2단계 군집분석법을 사용하여 농촌관광 편의시설을 유형화하였다. 그 다음으로 군집분석에 사용되는 변인이 범주형 변인이 있을 경우 전통적인 군집분석 방법을 적용할 수 없기 때문에 2단계 군집분석을 하였다. 본 연구는 2단계 군집분석법이 범주형 변인으로 측정된 농촌관광의 편의시설을 유형화하는 데 매우 유용하다는 것을 보여 주고 있다. 다중로짓 모형을 사용하여 특정 편의시설 유형을 선호할 확률에 영향을 미치는 농촌관광 방문자의 사회인구학적 특성과 여행특성을 규명하였다. 즉, 다중로짓 모형을 통해 참조항(일반농가형)으로 설정된 편의시설 유형에 비해 특정 편의시설을 선호할 확률에 영향을 미치는 소비자의 특성을 규명할 수 있다는 것이 본 연구의 특징이다.
In this paper, an online video summarization algorithm based on multiple object detection is proposed. As crime has been on the rise due to the recent rapid urbanization, the people's appetite for safety has been growing and the installation of surveillance cameras such as a closed-circuit television(CCTV) has been increasing in many cities. However, it takes a lot of time and labor to retrieve and analyze a huge amount of video data from numerous CCTVs. As a result, there is an increasing demand for intelligent video recognition systems that can automatically detect and summarize various events occurring on CCTVs. Video summarization is a method of generating synopsis video of a long time original video so that users can watch it in a short time. The proposed video summarization method can be divided into two stages. The object extraction step detects a specific object in the video and extracts a specific object desired by the user. The video summary step creates a final synopsis video based on the objects extracted in the previous object extraction step. While the existed methods do not consider the interaction between objects from the original video when generating the synopsis video, in the proposed method, new object clustering algorithm can effectively maintain interaction between objects in original video in synopsis video. This paper also proposed an online optimization method that can efficiently summarize the large number of objects appearing in long-time videos. Finally, Experimental results show that the performance of the proposed method is superior to that of the existing video synopsis algorithm.
컴퓨터 비전 분야에서 영상의 특성을 유지하면서 영상을 간소화하여 계산량을 줄이는 방법으로 전처리 단계에서 슈퍼픽셀 방법이 많이 사용되고 있다. 하지만 슈퍼픽셀 단계에서는 영상의 특성을 고려하는 것 보다는 화소의 값을 기준으로 일정한 크기와 형태의 슈퍼픽셀을 생성하는 것이 일반적이다. 본 논문에서는 응용에 맞게 영상의 특성을 고려하여 슈퍼픽셀을 생성할 수 있는 방법을 제안한다. 제안하는 방법은 두 단계로 이루어지며, 첫 번째 단계에서 영상을 과분할 하여 영상의 경계 정보들이 잘 보존되게 한다. 두 번째 단계에서는 과분할 된 슈퍼픽셀들을 유사도를 기준으로 병합하여 원하는 개수의 슈퍼픽셀을 생성한다. 이때 슈퍼픽셀의 최대 크기를 제한함으로써 슈퍼픽셀의 형태를 제어한다. 실험 결과는 제안하는 방법으로 생성된 슈퍼픽셀이 기존 방법에 의해 생성된 슈퍼픽셀 보다 정확하게 경계 정보를 보존하는 것을 보여준다.
전력수요의 예측은 예측기간에 따라 중장기 전력수요 예측과 단기 부하 예측으로 구분할 수 있다. 기존의 단기 부하예측은 주로 역전파 알고리즘(back propagation algorithm)다층퍼셉트론을 이용하여 예측을 하였으나 이는 학습시간이 많이 걸릴 뿐만 아니라 학습도중에 지역최소점(local minima)에 빠져 학습이 계속되지 못한다는 문제가 있다. 본 논문은 이러한 역전파 알고리즘의 문제점을 해결할 수 있는 방법으로 Radial Basis 함수(Radial Basis Function)를 이용하여 동적 단기부하 예측 모형을 제안한다. Radial Basis 함수는 하나의 은닉층(hidden layer)을 갖고 있으며, 전방향(feed-forward)학습을 한다는 특징이 있다. 본 논문에서 제안한 단기 부하 예측모형은 학습을 하기 위하여 시간대별 부하량을 클러스터링 하고, 이 클러스터의 중심값을 Radial Basis 함수의 은닉층으로 하여 학습을 한 다음 예측하고자 하는 패턴을 한 단위로 하여 시단대별로 예측하였다. 기존의 연구에서의 클러스터링 방법으로는 통계학의 K-Means 방법이나 Kohonen의 LVQ(Learning Vector Quantization)을 주로 이용하였으나 본 논문에서는 패턴의 분류에 있어서 다른 알고리즘보다 편차가 작은 Pal, et. al.의 GLVQ(Generalized LVQ) 알고리즘을 이용하였다. 본 논문에서 이용한 데이타는 1995년 3월 1일-3일, 6월 1일-3일, 7월 1일-3일, 9월 1일-3일, 11월 1일-3일의 72시간 데이타를 입력하여 월별 4일의 24시간의 예측시간으로 예측하였다. 실험결과 월별 1일과 3일까지의 학습데이타로 1시간 후의 부하량을 24시간동안 예측한 결과 1.3795%의 평균 오차율로 예측하였다.
Recently, many researches have been done to solve the challenging problem of Blind Source Separation (BSS) problems in the underdetermined cases, and the “Two-step” method is widely used, which estimates the mixing matrix first and then extracts the sources. To estimate the mixing matrix, conventional algorithms such as Single-Source-Points (SSPs) detection only exploits the sparsity of original signals. This paper proposes a new underdetermined mixing matrix estimation method for time-delayed mixtures based on the receiver prior exploitation. The prior information is extracted from the specific structure of the complex-valued mixing matrix, which is used to derive a special criterion to determine the SSPs. Moreover, after selecting the SSPs, Agglomerative Hierarchical Clustering (AHC) is used to automaticly cluster, suppress, and estimate all the elements of mixing matrix. Finally, a convex-model based subspace method is applied for signal separation. Simulation results show that the proposed algorithm can estimate the mixing matrix and extract the original source signals with higher accuracy especially in low SNR environments, and does not need the number of sources before hand, which is more reliable in the real non-cooperative environment.
This study describes an approach for comparative bibliometric analysis of scientific publications related to (i) individual or several departments comprising a university, and (ii) broader integrated subject areas using multiple disciplinary schemes. It uses a custom dataset of scientific publications (ca. 15,000 articles and reviews, published during 2009-2013, and recorded in the Web of Science Core Collections) with author affiliations to the research departments, dedicated to science, technology, engineering, mathematics, and medicine (STEMM), of a comprehensive university. The dataset was subjected, at first, to the department level and discipline level analyses using the newly available KAKEN-L3 classification (based on MEXT/JSPS Grants-in-Aid system), hierarchical clustering, correspondence analysis to decipher the major departmental and disciplinary clusters, and visualization of the department-discipline relationships using two-dimensional stacked bar diagrams. The next step involved the creation of subsets covering integrated subject areas and a comparative analysis of departmental contributions to a specific area (medical, health and life science) using several disciplinary schemes: Essential Science Indicators (ESI) 22 research fields, SCOPUS 27 subject areas, OECD Frascati 38 subordinate research fields, and KAKEN-L3 66 subject categories. To illustrate the effective use of the science mapping techniques, the same subset for medical, health and life science area was subjected to network analyses for co-occurrences of keywords, bibliographic coupling of the publication sources, and co-citation of sources in the reference lists. The science mapping approach demonstrates the ways to extract information on the prolific research themes, the most frequently used journals for publishing research findings, and the knowledge base underlying the research activities covered by the publications concerned.
Objective: The objectives of this study were to compare identified informative regions through two genome-wide association study (GWAS) approaches and determine the accuracy and bias of the direct genomic value (DGV) for milk production traits in Korean Holstein cattle, using two genomic prediction approaches: single-step genomic best linear unbiased prediction (ss-GBLUP) and Bayesian Bayes-B. Methods: Records on production traits such as adjusted 305-day milk (MY305), fat (FY305), and protein (PY305) yields were collected from 265,271 first parity cows. After quality control, 50,765 single-nucleotide polymorphic genotypes were available for analysis. In GWAS for ss-GBLUP (ssGWAS) and Bayes-B (BayesGWAS), the proportion of genetic variance for each 1-Mb genomic window was calculated and used to identify informative genomic regions. Accuracy of the DGV was estimated by a five-fold cross-validation with random clustering. As a measure of accuracy for DGV, we also assessed the correlation between DGV and deregressed-estimated breeding value (DEBV). The bias of DGV for each method was obtained by determining regression coefficients. Results: A total of nine and five significant windows (1 Mb) were identified for MY305 using ssGWAS and BayesGWAS, respectively. Using ssGWAS and BayesGWAS, we also detected multiple significant regions for FY305 (12 and 7) and PY305 (14 and 2), respectively. Both single-step DGV and Bayes DGV also showed somewhat moderate accuracy ranges for MY305 (0.32 to 0.34), FY305 (0.37 to 0.39), and PY305 (0.35 to 0.36) traits, respectively. The mean biases of DGVs determined using the single-step and Bayesian methods were $1.50{\pm}0.21$ and $1.18{\pm}0.26$ for MY305, $1.75{\pm}0.33$ and $1.14{\pm}0.20$ for FY305, and $1.59{\pm}0.20$ and $1.14{\pm}0.15$ for PY305, respectively. Conclusion: From the bias perspective, we believe that genomic selection based on the application of Bayesian approaches would be more suitable than application of ss-GBLUP in Korean Holstein populations.
Objectives : Recently, network science is very popular topic in various scientific fields and many studies have reported that it gives meaningful results on studying characteristics of a complex system. In this study, based on network theory, we made acupoints network using data of combined acupoints which appeared at "Beijiqianjinyaofang". We focused to find out the distinctive roles of remote and local combinations on the network. Furthermore, we aimed to identify the possibility of numerical and quantitative application to acupuncture researches. Methods : Based on examples of combined acupoints in "Beijiqianjinyaofang", the network consisted of 291 nodes and 2,431 links. The spatial distances between combined acupoints were calculated by the human dummy model. We removed the links step by step for the three cases - remote, local, and random cases, and observed the characteristic changes by calculating path lengths, similarity indices, and clustering coefficients. Also cluster analysis was carried out. Results : The network had a small number of remote links, and a large number of local links. These two links had the distinct characteristics. Whereas the local links formed a cluster of nearby nodes, remote links played a role to increase the correlation between the clusters. Conclusions : These results suggest that acupoints network increases the connectivity between the distal part and the trunk of human body, and enables various combinations of the acupoints. This finding conclusively showed that mechanism of combined acupoints could be interpreted meaningfully by applying network theory in acupuncture researches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.