• 제목/요약/키워드: Two-step Clustering

검색결과 85건 처리시간 0.021초

Facial Expression Recognition with Fuzzy C-Means Clusstering Algorithm and Neural Network Based on Gabor Wavelets

  • Youngsuk Shin;Chansup Chung;Lee, Yillbyung
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.126-132
    • /
    • 2000
  • This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.

  • PDF

일반거리산정방법을 이용한 다-물류센터의 최적 수송경로 계획 모델 (A Vehicle Routing Model for Multi-Supply Centers Based on Lp-Distance)

  • 황흥석
    • 산업공학
    • /
    • 제11권1호
    • /
    • pp.85-95
    • /
    • 1998
  • This study is focussed on an optimal vehicle routing model for multi-supply centers in two-echelon logistic system. The aim of this study is to deliver goods for demand sites with optimal decision. This study investigated an integrated model using step-by-step approach based on relationship that exists between the inventory allocation and vehicle routing with restricted amount of inventory and transportations such as the capability of supply centers, vehicle capacity and transportation parameters. Three sub-models are developed: 1) sector-clustering model, 2) a vehicle-routing model based on clustering and a heuristic algorithm, and 3) a vehicle route scheduling model using TSP-solver based on genetic and branch-and-bound algorithm. Also, we have developed computer programs for each sub-models and user interface with visualization for major inputs and outputs. The application and superior performance of the proposed model are demonstrated by several sample runs for the inventory-allocation and vehicle routing problems.

  • PDF

다단계 계층군집 영상분류법을 이용한 토지 피복 분석 (Analysis of Land-cover Types Using Multistage Hierarchical flustering Image Classification)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제19권2호
    • /
    • pp.135-147
    • /
    • 2003
  • 본 연구는 한반도 위성 영상자료에 다단계 계층군집 영상분류법을 적용하여 관측지역의 피복특성을 분석한다. 다단계 계층군집 영상분류는 크게 두 단계로 이루어진다. 첫 번째 단계는 계층군집에 의해 공간적으로 근접하고 있는 이웃집단간의 결합을 하는 공간확장 영상분할 단계이고 두번째 단계는 결합지역의 공간적 제약 없이 영상분할 단계에서 분할된 집단을 계층군집에 의해 적은 한정적인 수의 클래스로 분류하는 과정이다. 계층군집 영상분류는 수치영상의 계층구조에 근거하여 매 단계 두 개의 집단을 한 개의 집단으로 합병하므로 클래스 수에 따른 분류집단 간의 관계를 나타내는 계층나무를 구성할 수 있다. 실험결과는 계층군집 영상분류에 의해 구성된 계층나무는 토지사용간의 계층구조를 자세히 밝혀주고 토지 피복 특성의 정확한 분석에는 좀 더 자세한 분광정보가 필요함을 보여주고 있다.

데이터마이닝에 의한 고객세분화 개발 (A Development of Customer Segmentation by Using Data Mining Technique)

  • 진서훈
    • 응용통계연구
    • /
    • 제18권3호
    • /
    • pp.555-565
    • /
    • 2005
  • 고객세분화는 기업이 관계하고 있는 고객을 이해하고 그 이해를 바탕으로 효과적인 고객관리를 수행하기 위해 필수적인 요소인데 데이터마이닝이 기업의 정보관리영역에 적극적으로 활용되면서 보다 과학적이고 최적화된 형태로 개발되고 있다. 본 연구에서는 신용카드고객 의 카드사용행태에 근거하여 각 고객을 서로 유사한 사용행태를 보이는 고객군으로 세분화하는 과정을 소개하였다. 고객이 실제로 신용카드를 사용하면서 발생시킨 거래정보에만 의존하여 고객세분화를 개발하였으며 이는 마케팅의 관점에서 상당히 의미있는 내용이 될 수 있다. 고객세분화의 개발을 위하여 데이터마이닝기법인 k-평균 군집방법과 최장연결법에 의한 계보적 군집방법을 단계적으로 활용하는 이단계 군집방법을 이용하였다.

소프트웨어 불법복제에 영향을 미치는 환경 요인에 기반한 국가 분류 (Country Clustering Based on Environmental Factors Influencing on Software Piracy)

  • 서보밀;심준호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제26권4호
    • /
    • pp.227-246
    • /
    • 2017
  • Purpose: As the importance of software has been emphasized recently, the size of the software market is continuously expanding. The development of the software market is being adversely affected by software piracy. In this study, we try to classify countries around the world based on the macro environmental factors, which influence software piracy. We also try to identify the differences in software piracy for each classified type. Design/methodology/approach: The data-driven approach is used in this study. From the BSA, the World Bank, and the OECD, we collect data from 1990 to 2015 for 127 environmental variables of 225 countries. Cronbach's ${\alpha}$ analysis, item-to-total correlation analysis, and exploratory factor analysis derive 15 constructs from the data. We apply two-step approach to cluster analysis. The number of clusters is determined to be 5 by hierarchical cluster analysis at the first step, and the countries are classified by the K-means clustering at the second step. We conduct ANOVA and MANOVA in order to verify the differences of the environmental factors and software piracy among derived clusters. Findings: The five clusters are identified as underdeveloped countries, developing countries, developed countries, world powers, and developing country with large market. There are statistically significant differences in the environmental factors among the clusters. In addition, there are statistically significant differences in software piracy rate, pirated value, and legal software sales among the clusters.

과거이력자료를 활용한 요일별 패턴분류 알고리즘 개발 (Development of a Daily Pattern Clustering Algorithm using Historical Profiles)

  • 조준한;김보성;김성호;강원의
    • 한국ITS학회 논문지
    • /
    • 제10권4호
    • /
    • pp.11-23
    • /
    • 2011
  • 이 연구는 시계열 과거 속도자료를 활용하여 유사한 패턴 변화를 보이는 요일을 그룹핑하는 알고리즘을 개발하였다. 알고리즘에 적용할 이력자료 시간적 범위는 과거 2개월치 자료를 사용하였으며, 공간적 범위는 도시부도로를 대상으로 하였다. 이 연구에서 제안한 알고리즘은 크게 거시적인 관점과 미시적인 관점으로 나누어 요일별 패턴분류를 수행하였다. 먼저 거시적인 관점에서 요일별 첨두/비첨두 시간대와 요일별 속도변화가 크게 나타나는 중점시간대를 도출하였다. 미시적인 관점에서는 거시적인 관점에서 도출된 중점시간대를 대상으로 요일간 속도 차이를 개별(요일별) 혹은 그룹간의 유사성을 비교하여 단계적으로 분류하는 2단계 속도 군집 알고리즘(Two-step speed clustering algorithm, TSC)을 개발하였다. TSC 알고리즘은 중점시간대의 매 가공주기(또는 제공주기)마다 요일별(월~일) 속도차이를 토대로 그룹핑하는 1단계와 1단계에서 도출된 각 그룹의 평균과 요일간의 속도차이를 비교하여 재할당하는 2단계로 구성된다. TSC 알고리즘은 실제 지점검지기에서 수집된 시간대별 시계열 자료를 토대로 개발 및 성능평가가 수행되었다. 따라서, 교통정보센터에서 수집 가공 저장되는 과거이력자료를 이용하여 요일별 패턴분류 수행이 가능하고 알고리즘 구현도 실제 가공체계에 적용하기 용이하다. 이 연구에서 제안한 알고리즘은 통행패턴기반 정보가공 알고리즘 개발, 요일별 반복정체구간 운영관리, TOD에 근거한 신호운영 개선 등 교통운영 및 관리 전반에 적용이 가능하다.

Multi-Cluster based Dynamic Channel Assignment for Dense Femtocell Networks

  • Kim, Se-Jin;Cho, IlKwon;Lee, ByungBog;Bae, Sang-Hyun;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권4호
    • /
    • pp.1535-1554
    • /
    • 2016
  • This paper proposes a novel channel assignment scheme called multi-cluster based dynamic channel assignment (MC-DCA) to improve system performance for the downlink of dense femtocell networks (DFNs) based on orthogonal frequency division multiple access (OFDMA) and frequency division duplexing (FDD). In order to dynamically assign channels for femtocell access points (FAPs), the MC-DCA scheme uses a heuristic method that consists of two steps: one is a multiple cluster assignment step to group FAPs using graph coloring algorithm with some extensions, while the other is a dynamic subchannel assignment step to allocate subchannels for maximizing the system capacity. Through simulations, we first find optimum parameters of the multiple FAP clustering to maximize the system capacity and then evaluate system performance in terms of the mean FAP capacity, unsatisfied femtocell user equipment (FUE) probability, and mean FAP power consumption for data transmission based on a given FUE traffic load. As a result, the MC-DCA scheme outperforms other schemes in two different DFN environments for commercial and office buildings.

방송 매체 간 경쟁 상황에서의 활용 자원에 기반한 IPTV 고객 세분화 (Customer Segmentation for IPTV Based on Competitive Resources under the Competition Environment among Broadcasting Media)

  • 서보밀
    • Journal of Information Technology Applications and Management
    • /
    • 제19권2호
    • /
    • pp.97-116
    • /
    • 2012
  • Since 2008 when IPTV service entered the broadcasting market, the competition among interactive broadcasting media has been growing more and more fierce. To make a market strategy under the harsh competition, this study tried to make an IPTV customer segmentation based on the characteristics of interactive broadcasting media. From previous literature, this study drew five characteristics of interactive broadcasting media : ease of use, two-way communications, active control, variety of content, and economic efficiency. Two-step clustering based on these characteristics identified four customer segments. There were statistically significant differences in the five characteristics among the customer segments. This study profiled the customer segments and proposed competitive strategies for each customer segment.

마이크로 어레이 데이터에 적용된 2단계 K-means 클러스터링의 소개 (An Introduction of Two-Step K-means Clustering Applied to Microarray Data)

  • 박대훈;김연태;김성신;이춘환
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.167-172
    • /
    • 2007
  • 많은 유전자 정보와 그 부산물은 많은 방법을 통해 연구되어 왔다. DNA 마이크로어레이 기술의 사용은 많은 데이터를 가져왔으며, 이렇게 얻은 데이터는 기존의 연구 방법으로는 분석하기 힘들다. 본 논문에서는 많은 양의 데이터를 처리할 수 있게 하기 위하여 K-means 클러스터링 알고리즘을 이용한 분할 클러스터링을 제안하였다. 제안한 방법을 쌀 유전자로부터 나온 마이크로어레이 데이터에 적용함으로써 제안된 클러스터링 방법의 유용성을 검증하였으며, 기존의 K-means 클러스터링 알고리즘을 적용한 결과와 비교함으로써 제안된 알고리즘의 우수성을 확인할 수 있었다.

밀도함수를 이용한 근사적 퍼지 클러스처링 (Approximate Fuzzy Clustering Based on Density Functions)

  • 권석호;손세호
    • 한국지능시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.285-292
    • /
    • 2000
  • 자료 분석 과정을 살펴 보면 1) 자료가 갖는 경향 평가, 2) 클러스터 분석, 3) 클러스터의 타당성 조사라는 과정을 거쳐 이루어진다. 이 분석법은 2) 및 3) 단계의 반복 수행으로 인하여 많은 계산 시간이 소요되므로 비효율적인 방법이라 할 수 있다. 본 논문에서는, 이와 같은 단점을 보완하기 위하여 자료가 갖는 개략적 특성을 파악하여 자료 속에 존재하는 클러스터의 근사적 개수 및 중심을 정한 후, 이 정보를 기존의 일반적인 퍼지 클러스터링 알고리즘에 입력하여 클러스터링을 수행하는 밀도함수를 이용한 계층적 구조의 근사적 클러스터링 알고리즘을 제안하고, 예제를 통하여 제안된 알고리즘의 타당성을 보인다.

  • PDF