• Title/Summary/Keyword: Two-phase motor

Search Result 426, Processing Time 0.027 seconds

A Study on the Design of Single Phase Cycloconverter by Cosine Wave Crossing Control Method (코사인 점호방식에 의한 단상 싸이클로콘버터의 설계에 관한 연구)

  • 김시헌;안병원;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.71-85
    • /
    • 1993
  • The Cycloconverter that the author is going to treat in this paper, has strong advantages over the D.C. Link Inverter in points of chattering torque problem and natural commutation. Thus, the Cycloconverter is expected to be well applied to large and low-speed machines which require better speed control at low frequency. But the control circuit of Cycloconverter has two weak points described as follows. 1) Because of its rather complicated control circuit, it is likely to be illoperating due to unexpected noise signals, thus the higher the accuracy and reliability of the circuit is required to be, the more the circuit may cost. 2) Because the load current is not purely sinusoidal, the Cycloconverter may possibly be destroyed in case of inaccurate convert switching resulted from the difficulties in detecting the load current-zero and the current direction at the moment. In this paper, the author first of all intends to design and build a modified VVVF-type Noncirculating Current Cycloconverter to which recently proposed control methods are applied for improving the circuit simplicity, the control performance, and the system reliability. And then, experiments for observing the output waveforms of the Cycloconverter which is controlled by Singled-Board Computer using 8086 16-bit microprocesser are carried out. Finally the author concludes the result of this study as follows. 1) By replacing the conventional analog control circuits such as Reference Wave Generator, Cosine Timing Wave Generator, and Comparator with softwares, a great circuit simplicity is achieved. 2) The output of the designed Cycloconverter changes its frequency very fast without showing discontinuity of its waveform, and this waveform characteristics enables the smooth speed control of Induction Motor. 3) The design control circuit of Cycloconverter can be applied to the systems of 12 or 24 pulses because of its short processing period.

  • PDF

Design of Optimized Radial Basis Function Neural Networks Classifier Using EMC Sensor for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위해 EMC센서를 이용한 최적화된 RBFNNs 분류기 설계)

  • Jeong, Byeong-Jin;Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1392-1401
    • /
    • 2017
  • In this study, the design methodology of pattern classification is introduced for avoiding faults through partial discharge occurring in the power facilities and local sites. In order to classify some partial discharge types according to the characteristics of each feature, the model is constructed by using the Radial Basis Function Neural Networks(RBFNNs) and Particle Swarm Optimization(PSO). In the input layer of the RBFNNs, the feature vector is searched and the dimension is reduced through Principal Component Analysis(PCA) and PSO. In the hidden layer, the fuzzy coefficients of the fuzzy clustering method(FCM) are tuned using PSO. Raw datasets for partial discharge are obtained through the Motor Insulation Monitoring System(MIMS) instrument using an Epoxy Mica Coupling(EMC) sensor. The preprocessed datasets for partial discharge are acquired through the Phase Resolved Partial Discharge Analysis(PRPDA) preprocessing algorithm to obtain partial discharge types such as void, corona, surface, and slot discharges. Also, when the amplitude size is considered as two types of both the maximum value and the average value in the process for extracting the preprocessed datasets, two different kinds of feature datasets are produced. In this study, the classification ratio between the proposed RBFNNs model and other classifiers is shown by using the two different kinds of feature datasets, and also we demonstrate the proposed model shows superiority from the viewpoint of classification performance.

Comparative Study of Minimum Ripple Switching Loss PWM Hybrid Sequences for Two-level VSI Drives

  • Vivek, G.;Biswas, Jayanta;Nair, Meenu D.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1729-1750
    • /
    • 2018
  • Voltage source inverters (VSIs) are widely used to drive induction motors in industry applications. The quality of output waveforms depends on the switching sequences used in pulse width modulation (PWM). In this work, all existing optimal space vector pulse width modulation (SVPWM) switching strategies are studied. The performance of existing SVPWM switching strategies is optimized to realize a tradeoff between quality of output waveforms and switching losses. This study generalizes the existing optimal switching sequences for total harmonic distortions (THDs) and switching losses for different modulation indexes and reference angles with a parameter called quality factor. This factor provides a common platform in which the THDs and switching losses of different SVPWM techniques can be compared. The optimal spatial distribution of each sequence is derived on the basis of the quality factor to minimize harmonic current distortions and switching losses in a sector; the result is the minimum ripple loss SVPWM (MRSLPWM). By employing the sequences from optimized switching maps, the proposed method can simultaneously reduce THDs and switching losses. Two hybrid SVPWM techniques are proposed to reduce line current distortions and switching losses in motor drives. The proposed hybrid SVPWM strategies are MRSLPWM 30 and MRSLPWM 90. With a low-cost PIC microcontroller (PIC18F452), the proposed hybrid SVPWM techniques and the quality of output waveforms are experimentally validated on a 2 kVA VSI based on a three-phase two-level insulated gate bipolar transistor.

A Low Cost Position Sensing Method of Switched Reluctance Motor Using Reflective Type Optical-sensors (반사형 광센서를 이용한 저가형 SRM 위치검출기법)

  • Kim S.J.;Yoon Y.H.;Won C.Y.;Kim H.S.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.148-154
    • /
    • 2005
  • As the exciting point of each phase is determined by the position of rotor, the rotor's accurate position-information is needed for the Switched Reluctance Motor(SRM). When using an absolute-encoder or a resolver, to detect the location of rotor the initial starting is possible, as early sensing of rotor's location is possible. However, this is not appropriate, considering the economical efficiency, and in case of using the incremental-encoder, there's a problem at initial starting as it is not easy to track down the location of rotor at the very beginning. When using Hall-ICs, there's a fault, as it needs a special ring magnet. Considering the initial starting and economical efficiency, the optical sensor technique using a slotted-disk and an opto-interrupter is appropriate, however, this method needs three opto-interrupters and a slotted-disk when using the 6/4 pole SRM. Nevertheless, in this paper, it used only two optical sensors to operate 6/4 pole SRM and made the start up and also forward and reverse operation possible. By excluding the slotted-disc md shortening a optical sensor, it improved the convenience and economical efficiency of the production. Also, as the space for slotted-disc is no more needed, it was able to reduce the size of motor.

The Characteristics of DC-shift in Hybrid Rocket (하이브리드 로켓에서의 DC-shift 발생 특성)

  • Kang, Dong-Hoon;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.456-466
    • /
    • 2010
  • Typical combustion instability such as DC-Shift found in the hybrid rocket motor is characterized by non-linearity. DC-Shift can occur in two different realizations. One is so-called a positive shift of measured DC voltage where the pressure increase suddenly. The other is a negative shift where the pressure drops abruptly. In the present work, specifically the negative DC-Shift was investigated to analyze the effect of oxidizer flow condition and the resonance between fundamental frequency and other ones, such as Helmholtz frequency, and acoustic frequency. Results show a peak frequency of several hundreds HZ shifts as combustion proceeds. A negative DC-shift was found as the result of phase cancellation between two dominant frequency, combustion frequency and flow related frequency. Still is it required to study further to identify the change of dominance of frequency during the combustion.

Experimental Study of System Identification for Seismic Response of Building Structure (건축구조물의 지진응답제어를 위한 시스템 식별의 실험적 연구)

  • 주석준;박지훈;민경원;홍성목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.47-60
    • /
    • 1999
  • The stability and efficiency of structural control systems depend on the accuracy of mathematical model of the system to be controlled. In this study, state equation models of a small scale test structure and an AMD(active mass damper) are obtained separately using OKID(observer/Kalman filter identification) which is a time domain system identification method. The test structure with each floor acceleration as outputs is identified for two inputs - the ground acceleration and the acceleration of the moving mass of AMD relative to the installation floor - individually and the two identified state equation models are integrated into one by model reduction method. The AMD is identified with the motor control signal as an input and the relative acceleration of the moving mass as an output, and it is shown that the identified model has large damping ratio and phase shift. The transfer functions and the time histories reconstructed from the identified models of the test model and the AMD match well with those measured from the experiment.

  • PDF

Relations of neurological and social cognitions in patients with acute phase and chronic phase before returning to the community (급성기와 지역사회 복귀 전 만성 뇌졸중 환자의 신경학적 인지기능과 사회인지 기능의 관계)

  • Park, Myoung-Ok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.549-556
    • /
    • 2017
  • This study investigated the importance of social cognitive intervention and the cognitive rehabilitation intervention by comparing the difference and examining the relationship between neurological cognitive function and social cognitive function of stroke patients in the acute phase and chronic stroke before returning to the community. LOTCA, cartoon intention inference task, and social behavior sequence task were performed on 30 acute stroke inpatients and 30 chronic stroke patients from May 2015 to June 2016. A two sample t test was conducted to examine the differences between the groups. The Pearson's correlations test was performed to examine the correlation among the variables in each group. As a result, there were statistically significant differences between the neurological cognitive function and social cognitive function of acute stroke patients and chronic stroke patients who were undergoing rehabilitation training before returning to the community (p<0.05). A linear relationship was found between the thinking operation and social behavior sequence task in the acute stroke group (r=0.539, p<0.05). In the chronic stroke group, visual perception (r=0.530, p<0.05), visual motor organization (r=0.655, p<0.05) and thinking operation (r=0.534, p<0.05) were correlated with the cartoon intention inference task. In addition, the social behavior sequence task were correlated with visual organization (r=0.534, p<0.05) and thinking operation (r=0.764, p<0.05). As a result of multiple regression analysis, the neurological cognitive functions influencing the social cognitive function in the cartoon task was found to be the thinking operation (B = 0.431) in acute stroke patients and the thinking operation (B=0.272) and visuomotor organization (B = 0.218) in the case of chronic stroke. In addition, the results of the social behavior sequence task revealed the thinking operation (B=0.417) in the acute stroke patients, and thinking operation (B=0.267), visual motor organization(B=0.274) and visual perception(B=151) in chronic stroke patients to be significant. According to this result, there is a difference in the neurological and social cognitive levels between the two groups. Therefore, the social cognition is strongly related to the high level cognitive function as thinking operation of the neurological cognitive function. Therefore, in further research, it would be necessary to determine if there is a change in higher cognitive function in neurological cognitive function after applying a social cognition intervention program for stroke.

The Forecasting a Maximum Barbell Weight of Snatch Technique in Weightlifting (역도 인상동작 성공 시 최대 바벨무게 예측)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study was to predict the failure or success of the Snatch-lifting trial as a consequence of the stand-up phase simulated in Kane's equation of motion that was effective for the dynamic analysis of multi-segment. This experiment was a case study in which one male athlete (age: 23yrs, height: 154.4cm, weight: 64.5kg) from K University was selected The system of a simulation included a multi-segment system that had one degree of freedom and one generalized coordinate for the shank segment angle. The reference frame was fixed by the Nonlinear Trans formation (NLT) method in order to set up a fixed Cartesian coordinate system in space. A weightlifter lifted a 90kg-barbell that was 75% of subject's maximum lifting capability (120kg). For this study, six cameras (Qualisys Proreflex MCU240s) and two force-plates (Kistler 9286AAs) were used for collecting data. The motion tracks of 11 land markers were attached on the major joints of the body and barbell. The sampling rates of cameras and force-plates were set up 100Hz and 1000Hz, respectively. Data were processed via the Qualisys Track manager (QTM) software. Landmark positions and force-plate amplitudes were simultaneously integrated by Qualisys system The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 9Hz calculated with Andrew & Yu's formula. The input data of the model were derived from experimental data processed in Matlab6.5 and the solution of a model made in Kane's method was solved in Matematica5.0. The conclusions were as follows; 1. The torque motor of the shank with 246Nm from this experiment could lift a maximum barbell weight (158.98kg) which was about 246 times as much as subject's body weight (64.5kg). 2. The torque motor with 166.5 Nm, simulated by angular displacement of the shank matched to the experimental result, could lift a maximum barbell weight (90kg) which was about 1.4 times as much as subject's body weight (64.5kg). 3. Comparing subject's maximum barbell weight (120kg) with a modeling maximum barbell weight (155.51kg) and with an experimental maximum barbell weight (90kg), the differences between these were about +35.7kg and -30kg. These results strongly suggest that if the maximum barbell weight is decided, coaches will be able to provide further knowledge and information to weightlifters for the performance improvement and then prevent injuries from training of weightlifters. It hopes to apply Kane's method to other sports skill as well as weightlifting to simulate its motion in the future study.

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

Hormonic Evaluation of An Imported IAT(Intra Airport Transit) System in Incheon International Airport (인천 국제공항청사 경전철 도입에 따른 고조파 영향 분석)

  • Kim, Jin-O;Song, Hak-Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2006
  • This paper presents harmonic evaluation of an IAT(Intra Airport Transit) system in Incheon International Airport. It will be used for electric vehicles with 80[kW] per car produced by Mitsubishi Heavy Industries Ltd, and which is constructed with SIV(Static Inverter), VVVF controller and two induction motor. The vehicles operated in the IAT system can be treated as rapidly changing DC loat and at a feeding substation, 3-phase electric power is transferred to DC 750[V] by rectifier. Since vehicles are changing continuously, the voltages for the load fluctuate in the IAT system, and moreover, the voltage fluctuation generates high-order harmonics. It results the difficulty in maintaining power quality in KEPCO systems' side. The power quality of the IAT system in Incheon International Airport is evaluated using PSCAD/EMTDC simulator in the paper. The THD(Total Harmonic Distortion) of voltages and TDD(Total Demand Distortion) of currents, indices are calculated for the IAT system using the results of PSCAD/EMTDC dynamic simulation.