• Title/Summary/Keyword: Two-phase flow simulation

Search Result 316, Processing Time 0.023 seconds

Simulation of Two Phase Flow in Porous Media After Disso of Methane Hydrates (다공성 매질 내에서 메탄 하이드레이트의 분해에 의한 2 상 유동 해석)

  • Chang, Dong-Gun;Kim, Nam-Jin;Lee, Jae-Yong;Kim, Chong-Bo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.241-246
    • /
    • 2000
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bondin create host lattice cavities that can enclose a large variety of guest gas molecules. The natural hydrate crystal may exist at low temperature above the normal freezing point of water and pressure greater than about 30 bars. A lot of quantities of natural gas hydrates exists in the ear many production schemes are being studied. In the present investigation, depressurization method considered to predict the production of gas and the simulation of the two phase flow - gas and - in porous media is being carried out. The simulation show about the fluid flow in porous have a variety of applications in industry. Results provide the appearance of gas and water prod the pressure profile, the saturation of gas/ water/ hydrates profiles and the location of the pl front.

  • PDF

LES of Breakup and Atomization Characteristics of a Liquid Jet into Cross Turbulent Flow (난류 횡단류에 수직 분사 되는 액주의 분열 및 기화 특성에 관한 LES)

  • Yang, Seung-Joon;Koo, Ja-Ye;Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • LES(Large eddy simulation) of breakup and droplet atomization of a liquid jet into cross turbulent flow was performed. Two phase flow of gas and liquid phases were modeled by the mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid droplet respectively. The breakup process of a liquid column and droplets was observed by implementing the blob-KH wave breakup model. The penetration depth into cross flow was comparable with experimental data for several variants of the liquid-gas momentum flux ratio by varying liquid injection velocity. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

A Simulation on the Two-Phase Flow Characteristics in Gas Bubble Driven Circulation Systems (Gas Bubble Driven Circulation Systems에서의 이상유동 특성의 시뮬레이션)

  • 최청렬
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.17-32
    • /
    • 1998
  • The flow fields in Gas Bubble Driven Circulation Systems were numerically analyzed. In various gas flow rate and bubble size, the flow characteristics were predicted. Eulerian-Eulerian approach was used for the formulation of both the continuous and dispersed phases. The modification of the general purpose computer program PHOENICS code was employed to predict the mean flow fields, turbulent characteristics, gas dispersion, volume fraction. The predicted shows very satisfactory agreement with experimental results for all regions of ladle. The results are of interest in the design and operation of wide variety of material processing.

  • PDF

Transient Simulation of Solid/Liquid Two-Phase Flow in a Stirred Tank (교반기 내부의 고체/액체 다상 유동의 비정상상태 해석)

  • Kim, Chi-Gyeom;Yong, Suk-Jin;Won, Chan-Shik;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.236-239
    • /
    • 2008
  • In the present study, a transient glass particle distribution in a stirred solid/liquid mixer was investigated using computational fluid dynamics(CFD). The flow patterns and solid concentaration distriburion in a solid/liquid mixer formed by pitched paddle and baffles were predicted. The numerical results were compared to experimental data from the available literature. Eulerian multi-phase model was used to investigate the influence of the density of solid particle on the same impeller speed. A good agreement was obtained between the experimental data and simulation results.

  • PDF

The Study on the Two-Phase Flow in the Microchannel Using DSMC(Direct Simulation Monte Carlo) Method (DSMC(Direct Simulation Monte Carlo)방법을 이용한 마이크로관 내에서의 2 상유동에 관한 연구)

  • Lee, Jin-Ho;Ryu, Dong-Hun;Lee, Tae-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1667-1672
    • /
    • 2003
  • In contrast to the high demand for MEMS devices, microflow analysis is not feasible even for single-phase flow with conventional Navier-Stokes equation because of non-continuum effect when characteristic dimension is comparable with local mean free path. DSMC is one of particle based DNS(Direct Numerical Simulation) methods that uses no continuum assumption. In this paper, gas flow in microchannel is studied using DSMC. Interfacial shear and flow characteristics are observed and compared with the results of gas flow that is in contact with liquid case and solid wall case. The simulation is limited to the case of equilibrium steady state and evaporation/condensation coefficient is assumed to be the same and unity. System temperature remains constant and the interfacial shear appears to be small compared to the result with solid wall. This is because particles evaporated and reflected from the liquid surface form high density layer near the interface with liquid flow.

Numerical Simulation of Plate Finned-Tubes Condenser (평판휜-관 응축기의 수치 시뮬레이션)

  • Min, M.S.;Choi, S.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.193-205
    • /
    • 1994
  • A simulation program of the plate finned-tubes condenser widely used in the air conditioning system was developed. The program took into account the variations of the flow properties and fluid friction factor of refrigerant, and the heat transfer coefficients of refrigerant and air sides. The program was applied to a copper tube condenser which has outside diameter of 10.05mm, inside diameter of 9.35mm, length of 5.20m and three rows arraied staggered. Simulation results were such that refrigerant was super-heated state from the entrance to the 0.14m point, two-phase flow from the 0.14m point to the 4.10m point, sub-cooled state from the 4.10m point to the outlet. The degree of sub-cooled was $6.1^{\circ}C$. The variations of refrigerant quality, temperature, pressure, velocity, specific enthalpy, specific volume and air temperature, tube temperature were showed.

  • PDF

Experimental investigation and validation of TASS/SMR-S code for single-phase and two-phase natural circulation tests with SMART-ITL facility

  • Bae, Hwang;Chun, Ji-Han;Yun, Eunkoo;Chung, Young-Jong;Lim, Sung-Won;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.554-564
    • /
    • 2022
  • The natural circulation phenomena occurring in fully integrated nuclear reactors are associated with a unique formation mechanism. The phenomenon results from a structural feature of these reactors involving upward flow from the core, located in the central-bottom region of a single vessel, and downward flow to the steam generator in the annulus region. In this study, to understand the natural circulation in a single vessel involving a multi-layered flow path, single-phase and two-phase natural circulation tests were performed using the SMART-ITL facility, and validation analysis of the TASS/SMR-S code was performed by comparing the corresponding test results. Three single-phase natural circulation tests were sequentially conducted at 15%, 10%, and 5% of full-scaled core-power without RCP operation, following which a two-phase natural circulation test was successively conducted with an artificial discharge of coolant inventory. The simulation capability of the TASS/SMR-S code with respect to the natural circulation phenomena was validated against the test results, and somewhat conservative but reasonably comparative results in terms of overall thermalhydraulic behavior were shown.

The Simulation of Semicale Natural Circulation Test 5-NC-3,S-NC-4 Using RELAP5/Mod3.1

  • Kim, S. N.;W. H. Jang
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.424-434
    • /
    • 1998
  • RELAP5/Mod3.1 code was assessed with the semiscale experiment S-NC-3, and S-NC-4, which simulated the two-phase natural circulation and reflux condensation for the SBLOCA of PWR, respectively . Test S-NC-3 and S-NC-4 calculation results showed that RELAP5/Mod3.1 quite well describes the influence of steam generator secondary side heat transfer degradation on both two-phase natural circulation and reflux condensation. A comparison between the calculated and measured two-phase mass flow rate in test S-NC-3 shows good agreement for primary mass inventory more than 92%. And RELAP5/Mod3.1 have a good mass flow rate prediction capability for the transient such as S-NC-4 except some flow oscillations. The reflux flow rate for S-NC-4 test is under predicted, and the overall results verify that the correct prediction of the reduced liquid level appears to be required for the correct calculation of the overall phenomena.

  • PDF

LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct (사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석)

  • Yoo, Young-Lin;Han, Doo-Hee;Sung, Hong-Gye;Jeon, Hyuk-Soo;Park, Chul-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.290-297
    • /
    • 2016
  • A two-phase Large Eddy Simulation(LES) has been conducted to investigate breakup and atomization of a liquid jet in a cross turbulent flow in a rectangular duct. Gas-droplet two-phase flow was solved by a coupled Eulerian-Lagrangian method which tracks every individual particles. Effects of liquid breakup models, sub-grid scale models, and a order of spatial discretization was investigated. The penetration depth in cross flow was comparable with experimental data by varying breakup model and LES scheme. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.