• 제목/요약/키워드: Two-phase critical flow

검색결과 90건 처리시간 0.033초

A Study on the Instability Criterion for the Stratified Flow in Horizontal Pipe at Cocurrent Flow Conditions

  • Sung, Chang-Kyung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.463-468
    • /
    • 1997
  • This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow, Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al.[1] experimental data of pipes, it is shown that they are in good agreement with data.

  • PDF

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.

Critical Heat Flux and Flow Pattern for Water Flow in Annular Geometry

  • Park, Jae-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.224-229
    • /
    • 1996
  • An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced- circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m. inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, chum-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow.

  • PDF

구형 간극에서의 임계 출력에 대한 상관식 개발 (Correlation Development on Critical Power in a Spherical Narrow Gap)

  • 박래준;하광순;김상백;김희동;정지환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.235-240
    • /
    • 2001
  • The CHFG (Critical Heat Flux in Gap) test results have been evaluated to quantify the critical power in hemispherical narrow gaps and a new correlation has been developed. The CHFG test results have shown that increases in the gap thickness and pressure lead to an increase in critical power. The pressure effect on the critical power was found to be much milder than predictions by CHF correlations of other researches. From the CHFG test results, a new correlation on critical power in the hemispherical gap has been developed using the non-dimensional parameters as follows: $$\frac{qCHF}{{\rho}g^hfg}{\cdot}4\sqrt{\frac{{\rho}_g^2}{g{\sigma}{\Delta}{\rho}}=\frac{0.1042}{1+0.1375({\rho}g/{\rho}l)^{0.21}(D/s)}$$ The developed correlation has been expanded to apply the spherical geometry using the Siemens/KWU's correlation.

  • PDF