• Title/Summary/Keyword: Two-phase Nozzle

Search Result 131, Processing Time 0.031 seconds

Numerical Simulation of Two-Phase Flow field and Performance Prediction for Solid Rocket Motor Nozzle

  • Wahab, Shafqat;Kan, Xie;Yu, Liu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.275-282
    • /
    • 2008
  • This paper presents numerical investigation of multi-phase flow in solid rocket motor nozzle and effect of multi-phases on the performance prediction of the Solid Rocket Motor. Aluminized propellants are frequently used in solid rocket motors to increase specific impulse. An Eulerian-Lagrangian description has been used to analyze the motion of the micrometer sized and discrete phase that consist of the larger particulates present in the Solid Rocket Motor. Uniform particles diameters and Rosin-Rammler diameter distribution method has been used for the simulation of different burning of aluminum droplets generating aluminum oxide smokes. Roe-FDS scheme has been used to simulate the effects of the multi-phase flow. The results obtained show the sensitivity of this distribution to the nozzle flow dynamics, primarily at the nozzle inlet and exit. The analysis also provides effect of two phases on performance prediction of Solid Rocket Motor.

  • PDF

Optimization of FPD Cleaning System and Processing by Using a Two-Phase Flow Nozzle (이류체 노즐을 이용한 FPD 세정시스템 및 공정 개발)

  • Kim, Min-Su;Kim, Hyang-Ran;Kim, Hyun-Tae;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.429-433
    • /
    • 2014
  • As the fabrication technology used in FPDs(flat-panel displays) advances, the size of these panels is increasing and the pattern size is decreasing to the um range. Accordingly, a cleaning process during the FPD fabrication process is becoming more important to prevent yield reductions. The purpose of this study is to develop a FPD cleaning system and a cleaning process using a two-phase flow. The FPD cleaning system consists of two parts, one being a cleaning part which includes a two-phase flow nozzle, and the other being a drying part which includes an air-knife and a halogen lamp. To evaluate the particle removal efficiency by means of two-phase flow cleaning, silica particles $1.5{\mu}m$ in size were contaminated onto a six-inch silicon wafer and a four-inch glass wafer. We conducted cleaning processes under various conditions, i.e., DI water and nitrogen gas at different pressures, using a two-phase-flow nozzle with a gap distance between the nozzle and the substrate. The drying efficiency was also tested using the air-knife with a change in the gap distance between the air-knife and the substrate to remove the DI water which remained on the substrate after the two-phase-flow cleaning process. We obtained high efficiency in terms of particle removal as well as good drying efficiency through the optimized conditions of the two-phase-flow cleaning and air-knife processes.

A Study on the Development of Two-phase Nozzle Suitable for Multi-purpose Spraying in Orchards (과수원 내 다목적 살포에 적합한 이류체 노즐 개발에 관한 연구)

  • Han, Kwang Ho;Kang, Tae Gyoung;Lee, Dong In;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • In orchard or crop-growing environments, pesticides are sprayed using various nozzles to prevent pests and improve productivity. Nozzles currently in use are restricted for use in multi-purpose environments, thus, it is necessary to develop new nozzles. In this study, new two-phase nozzles are proposed to improve the performance of the nozzle (flow rate, spray angle, spray particle size). The performance of the two-phase nozzles are predicted through the CFD analysis and the performance of the nozzles is compared with the experiment. The experimental results showed that the proposed two-phase nozzles are available at relatively low operating pressure condition and are capable of extensive spray particle size control. Thus, the proposed nozzles are expected to be available in various orchard environments.

Experimental Study on the Flow Characteristics of Sinusoidal Nozzle Jet (정현파 형상 노즐 제트의 유동특성에 관한 실험적 연구)

  • Kim, Hak-Lim;Rajagopalan, S.;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • Two turbulent jet with different sinusoidal nozzle exit configurations of in-phase and $180^{\circ}$ out-of-phase were investigated experimentally using a smoke-wire method and a hot-wire anemometry. Mean velocity and turbulence intensity were measured at several downstream locations under $Re_D\;=\;5000$. For the case of in-phase nozzle configuration, the length of potential core exhibits negligible difference with respect to the transverse locations (0, $\lambda/4$ and $\lambda/2$), similar to that of a plane jet. On the other hand, a maximum difference of 30% in the potential-core length occurs for the $180^{\circ}$ out-of-phase configuration. The spatial distributions of turbulence intensities also show significant difference for the nozzle of $180^{\circ}$ out-of-phase, whereas non-symmetric distribution is observed in the near-exit region(x/D = 1) for the in-phase sinusoidal nozzle jet. Compared to a slit planc jet, the sinusoidal nozzle jets seem to suppress the velocity deficit as the flow goes downstream. The sinusoidal nozzle jet was found to decrease turbulent intensity dramatically. The flow visualization results show that the flow characteristics of the sinusoidal nozzle jet are quite different from those of the slit plane jet.

Two-Phase Jet Flow Characteristics in the Pure Oxygen Aeration System Using Two-phase Jet Nozzle (이상 제트 노즐을 사용한 순산소 폭기시스템의 이상유동 특성)

  • Jung, Chan-Hee;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.258-263
    • /
    • 2009
  • Jet Loop Reactor(JLR), in which a two-phase nozzle is installed, is the new design technique for the treatment of high concentration wastewater by accelerating of oxygen contacting between substrate and surrounding bacteria. This numerical study of the two phase jet flow was conducted to find the optimum design of JLR. It was shown that there was a minimum velocity in the nozzle for continuous circulation of wastewater. The optimum location and the size of the draft tube for continuous circulation were examined. It was certain that the smaller the air size is, the more the effect of the mixing increases. The relation between the mixing effect and the turbulence was confirmed.

An Experimental Study on the Atomization Characteristics of a Two-Phase Turbulent Jet of Liquid Sheet Type Co-Axial Nozzle (액막형 동축노즐의 2상 난류분사의 미립화 특성에 관한 실험적 연구)

  • 노병준;강신재;오제하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1529-1538
    • /
    • 1995
  • In this study, a liquid sheet type co-axial nozzle has been used to investigate the turbulent atomization characteristics which could result in the experimental data to be used in designing a jet nozzle with high performance. Image processing technique and immersion sampling method were employed to measure droplet size. In atomizing characteristics, droplet size distributions and absolute droplet sizes, SMD(Sauter Mean Diameter) have been investigated in the wide ranges of flow field depending upon the air-water mass ratios. And the comparisons between the present data and the semi-empirical curves have been conducted semi-empirical correlation for SMD has been derived in the present analysis.

A Study on the Effect of Flowrate on the Drop size from Two-Phase Coaxial Nozzle (이상류 동축노즐의 액경에 미치는 공급유량의 영향에 관한 연구)

  • 윤석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.933-942
    • /
    • 1992
  • The effects of the folwrate on the dropsize from the two-phase coaxial nozzle are investigated by using the direct photographic method and the empirical equation is obtained. For the photography, the light source which the life time is the order of 100ns is fabricated and the lens is the zoom lens which has the MICRO function with a teleconvertor. The distillated water and the compressed air of the surrounding temperature are injected and atomized. For the purpose of the exact adjustment and measurement of the flowrates, the two rotameters are used. As a result of this study, the sauter mean diameter of droplets has a tendency for a logarithmic function with air flowrate and for a exponential function with water flowrate.

An Analytical Study on the Gas-Solid Two Phase Flows

  • Sun, Jianguo;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF

An Experimental Study on the Superheated Liquid Jet (과열액체제트의 미립화에 관한 실험적 연구)

  • Lee J. G.;Lee S. Y.;Kim I. G.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.1
    • /
    • pp.89-102
    • /
    • 1987
  • Experiments have been carried out to study the atomisation characteristics of superheated liquid(water) jet injected into the atmosphere through a single-hole nozzle. In present experi-mental range, superheated liquid jet has been observed to be atomised in two-phase effluent type; that is, spray formed by the bubble nucleation in the nozzle. In case of liquid injection through a long nozzle (L/D=29.09), the critical superheat for occurrence of two-phase effluent atomisa-tion can be determined from sudden change of spray angle. Sauter mean diameter of the spray droplets decreases as the degree of superheat increases. For the short nozzle (L/D=7.27), mean diameter increases with the injection pressure, while it decreases for the long nozzle; however for the long nozzle the effect of injection pressure is not significant compared with the short nozzle. For the short nozzle the uniformity of drop size distribution increases with increasing the degree of superheat, but for the long nozzle the effect of superheat on the uniformity is not appreciable.

  • PDF

CFD Investigation of Rocket Nozzle Plume for Flame Deflector Preliminary Analysis (화염유도로 예비 해석을 위한 로켓노즐 플룸의 CFD 해석 검증)

  • Jun, Doo-Sung;Kim, Jae-Woo;Kim, Jong-Rok;Kim, Woo-Kyeom;Kim, Seung-Cheol;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.313-316
    • /
    • 2011
  • This paper investigates CFD investigation on single phase supersonic nozzle flow and 2-phase subson ic flow prior to rocket nozzle supersonic 2-phase flow with water injection within the flame deflector. Numerical results of supersonic nozzle single phase flow showed no notable unrealistic behavior as it captures the usual shock cell structures. Three-dimensional 2-phase flow analysis has also been performed to verify whether the approach can grab the droplet behavior during cooling by water injection. It is expected these basic studies will enhance the cooling problem analysis of supersonic 2-phase rocket plume in the future.

  • PDF