• Title/Summary/Keyword: Two-mirror system

Search Result 185, Processing Time 0.024 seconds

Measurement of Primary-mirror Vertex Coordinates for a Space Camera by Using a Computer-generated Hologram and a Theodolite (컴퓨터 제작 홀로그램과 데오도라이트를 이용한 인공위성 카메라 주 반사경의 정점 좌표 측정)

  • Kang, Hye-Eun;Song, Jae-Bong;Yang, Ho-soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.146-152
    • /
    • 2017
  • Alignment of the mirrors composing a space telescope is an important process for obtaining high optical resolution and performance of the camera system. The alignment of mirrors using cube mirrors requires a relative coordinate mapping between the mirror and the cube mirror before optical-system integration. Therefore, to align the spacecraft camera mirrors, the relative coordinates of the vertex of each mirror and the corresponding cube mirror must be accurately measured. This paper proposes a new method for finding the vertex position of a primary mirror, by using an optical fiber and alignment segments of a computer-generated hologram (CGH). The measurement system is composed of an optical testing interferometer and a multimode optical fiber. We used two theodolites to measure the relative coordinates of the optical fiber located at the mirror vertex with respect to the cube mirror, and achieved a measurement precision of better than $25{\mu}m$.

Alignment estimation performance of Multiple Design Configuration Optimization for three optical systems

  • Oh, Eun-Song;Kim, Seong-Hui;Kim, Yun-Jong;Lee, Han-Shin;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.31.1-31.1
    • /
    • 2011
  • In this study, we investigated alignment state estimation performances of the three methods i.e. merit function regression (MFR), differential wavefront sampling (DWS) and Multiple Design Configuration Optimization (MDCO). The three target optical systems are 1) a two-mirror Cassegrain system for deep space Earth observation, 2) intermediate size three-mirror anastigmat for Earth ocean monitoring, and 3) extremely large segmented optical system for astronomical observation. We ran alignment state estimation simulation for several alignment perturbation cases including 1mm to 10mm in decenter and from 0.1 to 1 degree in tilt perturbation error for the two-mirror Cassegrain system. In general, we note that MDCO shows more competitive estimation performance than MFR and DWS. The computational concept, case definition and the simulation results are discussed with implications to future works.

  • PDF

Reconstruction of Wide FOV Image from Hyperbolic Cylinder Mirror Camera (실린더형 쌍곡면 반사체 카메라 광각영상 복원)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.146-153
    • /
    • 2015
  • In order to contain as much information as possible in a single image, a wide FOV(Field-Of-View) imaging system is required. The catadioptric imaging system with hyperbolic cylinder mirror can acquire over 180 degree horizontal FOV realtime panorama image by using a conventional camera. Because the hyperbolic cylinder mirror has a curved surface in horizontal axis, the original image acquired from the imaging system has the geometrical distortion, which requires the image processing algorithm for reconstruction. In this paper, the image reconstruction algorithms for two cases are studied: (1) to obtain an image with uniform angular resolution and (2) to obtain horizontally rectilinear image. The image acquisition model of the hyperbolic cylinder mirror imaging system is analyzed by the geometrical optics and the image reconstruction algorithms are proposed based on the image acquisition model. To show the validity of the proposed algorithms, experiments are carried out and presented in this paper. The experimental results show that the reconstructed images have a uniform angular resolution and a rectilinear form in horizontal axis, which are natural to human.

Numerical Analysis of Aerodynamics and Acoustics around a Car Side mirror (수치해석을 통한 자동차 사이드 미러 주위의 공력 및 소음해석)

  • Park, Kihwan;Park, Hyunho;Lim, Taehun;Choi, Eundong;Kim, Moonsang
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.10-15
    • /
    • 2010
  • Aerodynamic noise is becoming the major source of annoyance for modern cars recently and is caused by many different noise sources in a car. Appropriate CFD technologies, therefore, have been developed to resolve the noise problems related with aerodynamics. It is necessary for designers to fully understand the relationship between vehicle aerodynamics and wind noise acoustics. In this study, we simulate the flow fields around two different shapes of side mirror models of passenger car and analyze the noise phenomena around one side mirror model that has lower drag than the other model using Fluent 6.3.

  • PDF

Numerical Analysis of Aerodynamics and Acoustics around a Car Side mirror (수치해석을 통한 자동차 사이드 미러 주위의 공력 및 소음해석)

  • Park, Kihwan;Park, Hyunho;Lim, Taehun;Choi, Eundong;Kim, Moonsang
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • Aerodynamic noise is becoming the major source of annoyance for modern cars recently and is caused by many different noise sources in a car. Appropriate CFD technologies, therefore, have been developed to resolve the noise problems related with aerodynamics. It is necessary for designers to fully understand the relationship between vehicle aerodynamics and wind noise acoustics. In this study, we simulate the flow fields around two different shapes of side mirror models of passenger car and analyze the noise phenomena around one side mirror model that has lower drag than the other model using Fluent 6.3.

  • PDF

Development of Half-Mirror Interface System and Its Application for Ubiquitous Environment (유비쿼터스 환경을 위한 하프미러형 인터페이스 시스템 개발과 응용)

  • Kwon Young-Joon;Kim Dae-Jin;Lee Sang-Wan;Bien Zeungnam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1020-1026
    • /
    • 2005
  • In the era of ubiquitous computing, human-friendly man-machine interface is getting more attention due to its possibility to offer convenient services. For this, in this paper, we introduce a 'Half-Mirror Interface System (HMIS)' as a novel type of human-friendly man-machine interfaces. Basically, HMIS consists of half-mirror, USB-Webcam, microphone, 2ch-speaker, and high-speed processing unit. In our HMIS, two principal operation modes are selected by the existence of the user in front of it. The first one, 'mirror-mode', is activated when the user's face is detected via USB-Webcam. In this mode, HMIS provides three basic functions such as 1) make-up assistance by magnifying an interested facial component and TTS (Text-To-Speech) guide for appropriate make-up, 2) Daily weather information provider via WWW service, 3) Health monitoring/diagnosis service using Chinese medicine knowledge. The second one, 'display-mode' is designed to show decorative pictures, family photos, art paintings and so on. This mode is activated when the user's face is not detected for a time being. In display-mode, we also added a 'healing-window' function and 'healing-music player' function for user's psychological comfort and/or relaxation. All these functions are accessible by commercially available voice synthesis/recognition package.

A Coaxial and Off-axial Integrated Three-mirror Optical System with High Resolution and Large Field of View

  • Chen, Zhe;Zhu, Junqing;Peng, Jiantao;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.94-100
    • /
    • 2016
  • A novel optical design for high resolution, large field of view (FOV) and multispectral remote sensing is presented. An f/7.3 Korsch and two f/17.9 Cook three-mirror optical systems are integrated by sharing the primary and secondary mirrors, bias of the FOV, decentering of the apertures and reasonable structure arrangement. The aperture stop of the Korsch system is located on the primary mirror, while those of the Cook systems are on the exit pupils. High resolution image with spectral coverage from visible to near-infrared (NIR) can be acquired through the Korsch system with a focal length of 14 m, while wide-field imaging is accomplished by the two Cook systems whose focal lengths are both 13.24 m. The full FOV is 4°×0.13°, a coverage width of 34.9 km at the altitude of 500 km can then be acquired by push-broom imaging. To facilitate controlling the stray light, the intermediate images and the real exit pupils are spatially available. After optimization, a near diffraction-limited performance and a compact optical package are achieved. The sharing of the on-axis primary and secondary mirrors reduces the cost of fabrication, test, and manufacture effectively. Besides, the two tertiary mirrors of the Cook systems possess the same parameters, further cutting down the cost.

Integral-floating Display with 360 Degree Horizontal Viewing Angle

  • Erdenebat, Munkh-Uchral;Baasantseren, Ganbat;Kim, Nam;Kwon, Ki-Chul;Byeon, Jina;Yoo, Kwan-Hee;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • A three-dimensional integral-floating display with 360 degree horizontal viewing angle is proposed. A lens array integrates two-dimensional elemental images projected by a digital micro-mirror device, reconstructing three-dimensional images. The three-dimensional images are then relayed to a mirror via double floating lenses. The mirror rotates in synchronization with the digital micro-mirror device to direct the relayed three-dimensional images to corresponding horizontal directions. By combining integral imaging and the rotating mirror scheme, the proposed method displays full-parallax three-dimensional images with 360 degree horizontal viewing angle.

A Study on the Fabrication and Characterization of Micromirrors Supported by S-shape Girders (S자형 들보에 의해 지지되는 micromirror의 제작 및 동작특성 분석)

  • Kim, Jong-Guk;Kim, Ho-Seong;Sin, Hyeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.11
    • /
    • pp.748-754
    • /
    • 1999
  • Micromirrors supported by S-shape girders were fabricated and their angular deflections were measured using a laser-based system. A micromirror consists of a $50\mum\times50\mum$ aluminum plate, posts and an S-shape girder. Two electrodes were deposited on two corners of the substrate beneath the mirror plate. $50\times50$micromirror array were fabricated using the Al-MEMS process. The electrostatic force caused by the voltage difference between the mirror plate and one of the electrodes causes the mirror plate to tilt until the girder touches the substrate. Bial voltage of the mirror plate is between 25~35V and signal pulse voltage on both electrodes is $\pm5V$. A laser-based system capable of real-time two-dimensional angular deflection measurement of the micromirror was developed. The operation of the system is based on measuring the displacement of a HeNe laser beam reflecting off the micromirror. The resonant frequency of the micromirror is 50kHz when the girder touches the substrate and it is 25 when the micromirror goes back to flat position, since the moving mass is about twice of the former case. The measurement results also revealed that the micromirror slants to the other direction even after the girder touches the substrate.

  • PDF

A study on optimum design of a lightweight mirror (경량화 반사경의 최적설계에 관한 연구)

  • 박강수;박현철;조지현;윤성기;이준호
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.443-448
    • /
    • 2003
  • A study on optimum design of the lightweight mirror of a satellite camera is presented. An optical surface deformation of the lightweight mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, optimum design of the lightweight mirror is presented. Total weight of the mirror to reduce the optical surface deformation and the launching cost is used as an objective function. Peak-to-valley value and natural frequency of the mirror are given as constraints to the optimization problem. The sensitivities of the objective function and constraint are calculated by a finite difference method. The optimization procedure is carried out by the commercial optimizer, DOT. As a verification of the optimum design of the mirror, two design examples are treated. In the real application example, the lightweight mirror with 600mm effective diameter is treated. The optimized results with various design variables, which are obtained by considering thickness limitations, are analyzed.