• Title/Summary/Keyword: Two-level converter

Search Result 158, Processing Time 0.021 seconds

Zero-Voltage Zero-Current Switching Three Level DC/DC Converter (영전압.영전류 스위칭 3 레벨 DC/DC 컨버터)

  • 김은수
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.682-690
    • /
    • 2002
  • The conventional three-level high frequency phase-shifted dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval.. Due to this circulating current and RMS current stress, conduction losses of transformer and switching devices increases. To alleviate these problems, we propose an improved three-level Zero Voltage and Zero Current Switching (ZVZCS) dc/dc converter using a tapped inductor, a snubber capacitor and two snubber diodes attached at the secondary side of transformer. The proposed ZVZCS converter is verified on a 7㎾, 30KHz experimental prototype.

Analysis of Parallel-Input Series-Output(PISO) Boost Converter With Output Voltage Balancing Characteristic (병렬입력/직렬출력(PISO) 부스트 컨버터의 출력 전압 밸런싱 특성 해석)

  • Nam, Hyun-Taek;Cha, Honnyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In this study, the output voltage balancing characteristics of parallel-input series-output (PISO) boost converter is analyzed. The PISO boost converter is derived by combining two basic boost converters. In comparison with the conventional three-level boost converter, the PISO boost converter can balance the output voltages under an unbalanced load condition without requiring additional circuit components and control strategy. A 2 kW prototype converter is built and tested to verify the output voltage balancing characteristics of the PISO boost converter.

A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter using Primary Clamping Diodes (1차측 클램핑 다이오드를 이용한 ZVS Three-Level DC/DC 컨버터에 관한 연구)

  • Chon, Yong-Jin;Kim, Yong;Bae, Jin-Yong;Kim, Pil-Soo;Lee, Eun-Young;Chang, Boo-Hoan
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.164-168
    • /
    • 2004
  • A Zero-Voltage-Switching(ZVS) Three-Level Converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however; the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage.

  • PDF

A Study on the Zero-Voltage and Zero-Current-Switching Three Level DC/DC Converter using Secondary Auxiliary Circuit (2차측 보조 회로를 이용한 ZVZCS Three Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Kim, Pill-Soo;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.320-323
    • /
    • 2001
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three Level DC/DC Converter is presented to secondary auxiliary circuit. The converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switch. A secondary auxiliary circuit, which consists of one small capacitor and two small diode, is added in the secondary to provides ZVZCS conditions to primary switches, and aids to clamp secondary rectifier voltage. The auxiliary circuit Includes neither lossy component nor addition active switch, which makes the proposed converter efficient and effective. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 500W 50kHz prototype converter.

  • PDF

Two Stage DC/DC Converter for Photovoltaic Generation (태양광 발전용 2단 구성 DC/DC 컨버터)

  • Yoon, Kwang-Ho;Phum, Sopheak;Kim, Eun-Soo;Won, Jong-Seob;Oh, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.618-626
    • /
    • 2011
  • Solar cell is one of the most important new renewable energy for future energy generation. This paper presents a novel two stage DC/DC converter topology for PV PCSs. The proposed converter consists of an interleaved boost converter and a two-tank LLC resonant converter which is connected in parallel in primary and series in secondary. The main idea of this topology is that the system can achieve either unilateral or bilateral operations due to the input voltage level of the PV module, which leads to a better performance. The operating schemes on the proposed converter are analyzed and described. A 2.2kW prototype product is built, tested and verified.

Analysis of Capacitor Voltage and Boost Vector in Neutral-Point-Clamped and H-Bridge Converter (NPC와 H-Bridge 컨버더의 부스트 벡터와 커패시터 전압의 해석)

  • 김정균;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.274-284
    • /
    • 2003
  • Multi-level converter that is high-capacity electric power conversion system is used widely to electric motor drive system and FATCs(Flexible AC Transmission Systems). H-Bridge converter has been prevalently applied to shunt-type system because it can be easily expanded to the multi-level. In steady states, converter is normally operated in the range of 0.7∼0.8 of modulation Index. Even though zero vectors are not imposed to high modulation index, DC-Link voltage Is constant. It means that converter has another boost vector except for zero vectors among several vectors in 3-level converter. This paper has examined the principle of boost vector and investigated the difference between another boost vector and zero vectors in 3-level converter. In addition, this paper has analysed and compared the charging currents and the capacitor voltages of two topologies. The currents and voltages are related to reference voltage. Therefore, it proposed the calculation method for the voltage ripple and the charging current of each capacitor and compared various DC-Link voltage control methods through the simulation.

A Snubber Circuit for Flying Capacitor Multilevel Inverter and Converter (플라잉 커패시터 멀티레벨 인버터 및 컨버터를 위한 스너버 회로)

  • 성현제
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.448-451
    • /
    • 2000
  • This paper proposed a snubber circuit for flying capacitor multilevel inverter and converter. The proposed snubber circuit makes use of Undeland snubber as basic snubber as basic snubber unit and has such an advantage of Undeland snubber used in the two-level inverter. Comparing conventional RCD/RLD snubber for multilevel in verter and converter the proposed snubber keeps such a good features as fewer number of components improved efficiency of system due to low loss snubber and reduction of voltage stress of main switching devices due to low overvoltage. Furthermore the proposed concept of constructing a snubber circuit for flying capacitor 3-level inverter and converter can apply to any level of them. In this paper the proposed snubber applies to three-level flying capacitor inverter and demonstrates its feature by computer simulation and experimental result.

  • PDF

Maximum Modulation Index of VSC HVDC based on MMC Considering Compensation Signals and AC Network Conditions (전력계통 전압 변동과 순환 전류 보상 성분을 고려한 MMC 기반 VSC-HVDC의 최대 변조 지수 선정에 관한 연구)

  • Kim, Chan-Ki;Belayneh, Negesse Belete;Park, Chang-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.61-67
    • /
    • 2020
  • This study deals with the modulation index (MI) of a voltage source converter (VSC) HVDC system based on a modular multilevel converter (MMC). In the two-level converter, the purpose of the MI is to maximize the achievable AC voltage of the converter from a fixed DC voltage. Unlike that in a two-level converter, the MI in the MMC topology plays a role in making the converter a voltage source using a capacitor. The circulating current in the MMC distorts the AC voltage reference, and the distortion affects the MI. In addition, the AC network conditions, such as AC voltage variation and reactive power, affect the MI. Therefore, the MI should be optimized with consideration of internal and external factors. This study proposes a method to optimize the MI of an MMC HVDC system.

A Study on the Controller Design of the Three-Level Boost Converter for Photovoltaic Power Conditioning System (태양광 발전 시스템용 3-레벨 부스트 컨버터 제어기 설계에 관한 연구)

  • Lee, Kyu-Min;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.227-236
    • /
    • 2021
  • This research proposes a modeling and controller design of a three-level boost (TLB) converter for the implementation of maximum power point tracking (MPPT) in the photovoltaic power conditioning system (PCS). Contrary to the output voltage control of the conventional controller, the Photovoltaic PCS requires an input voltage controller for MPPT operation. A TLB converter has the advantage of decreasing the inductor size and increasing efficiency compared with the existing booster converter. However, an optimal controller is difficult to design due to the complexity of the TLB operations, which have two operational modes on the duty ratio boundary of 0.5. Therefore, the unified linear model equations of the TLB converters, which can be applicable to both operational modes, are derived using linearized solar cell expressions. Furthermore, the transfer functions are obtained for the controller design. The MPPT voltage controller is designed using MATLAB SISOTOOL. In addition, a controller for capacitor voltage unbalancing is described and designed. The simulations and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.

A Three Level ZVZCS Phase-Shifted DC/DC Converter Using A Tapped Inductor And A Snubber Capacitor (탭-인덕터와 스너버-커패시터를 적용한 3 Level 영전압.영전류 스위칭 DC/DC 컨버터)

  • 김은수;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.209-216
    • /
    • 2001
  • The conventional three-level high frequency phase-shifted dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current and RMS current stress, conduction losses of transformer and switching devices increases. To alleviate these problems, we propose an improved three-level Zero Voltage and Zero Current Switchig (ZVZCS) dc/dc converter using a tapped inductor, a snubber capacitor and two snubber diodes attached at the secondary side of transformer. The proposed ZVZCS converter is verified on a 7kW, 30kHz experimental prototype.

  • PDF