• Title/Summary/Keyword: Two-level Classification algorithm

Search Result 57, Processing Time 0.025 seconds

A New Rijection Algorithm Using Word-Dependent Garbage Models

  • Lee, Gang-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2E
    • /
    • pp.27-31
    • /
    • 1997
  • This paper proposes a new rejection algorithm which distinguishes unregistered spoken words(or non-keywords) from registered vocabulary. Two kinds of garbage models are employed in this design ; the original garbage model and a new word garbage model. The original garbage model collects all non-keyword patterns where the new word garbage model collects patterns classified by recognizing each non-keyword pattern with registered vocabulary. These two types of garbage models work together to make a robust reject decision. The first stage of processing is the classification of an input pattern through the original garbage model. In the event that the first stage of processing is ambiguous, the new word dependent garbage model is used to classify thye input pattern as either a registered or non-registered word. This paper shows the efficiency of the new word dependent garbage model. A Dynamic Multisection method is used to test the performance of the algorithm. Results of this experiment show that the proposed algorithm performs at a higher level than that of the original garbage model.

  • PDF

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

EVALUATION OF SPEED AND ACCURACY FOR COMPARISON OF TEXTURE CLASSIFICATION IMPLEMENTATION ON EMBEDDED PLATFORM

  • Tou, Jing Yi;Khoo, Kenny Kuan Yew;Tay, Yong Haur;Lau, Phooi Yee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.89-93
    • /
    • 2009
  • Embedded systems are becoming more popular as many embedded platforms have become more affordable. It offers a compact solution for many different problems including computer vision applications. Texture classification can be used to solve various problems, and implementing it in embedded platforms will help in deploying these applications into the market. This paper proposes to deploy the texture classification algorithms onto the embedded computer vision (ECV) platform. Two algorithms are compared; grey level co-occurrence matrices (GLCM) and Gabor filters. Experimental results show that raw GLCM on MATLAB could achieves 50ms, being the fastest algorithm on the PC platform. Classification speed achieved on PC and ECV platform, in C, is 43ms and 3708ms respectively. Raw GLCM could achieve only 90.86% accuracy compared to the combination feature (GLCM and Gabor filters) at 91.06% accuracy. Overall, evaluating all results in terms of classification speed and accuracy, raw GLCM is more suitable to be implemented onto the ECV platform.

  • PDF

Emotion Classification Using EEG Spectrum Analysis and Bayesian Approach (뇌파 스펙트럼 분석과 베이지안 접근법을 이용한 정서 분류)

  • Chung, Seong Youb;Yoon, Hyun Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • This paper proposes an emotion classifier from EEG signals based on Bayes' theorem and a machine learning using a perceptron convergence algorithm. The emotions are represented on the valence and arousal dimensions. The fast Fourier transform spectrum analysis is used to extract features from the EEG signals. To verify the proposed method, we use an open database for emotion analysis using physiological signal (DEAP) and compare it with C-SVC which is one of the support vector machines. An emotion is defined as two-level class and three-level class in both valence and arousal dimensions. For the two-level class case, the accuracy of the valence and arousal estimation is 67% and 66%, respectively. For the three-level class case, the accuracy is 53% and 51%, respectively. Compared with the best case of the C-SVC, the proposed classifier gave 4% and 8% more accurate estimations of valence and arousal for the two-level class. In estimation of three-level class, the proposed method showed a similar performance to the best case of the C-SVC.

HKIB-20000 & HKIB-40075: Hangul Benchmark Collections for Text Categorization Research

  • Kim, Jin-Suk;Choe, Ho-Seop;You, Beom-Jong;Seo, Jeong-Hyun;Lee, Suk-Hoon;Ra, Dong-Yul
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.3
    • /
    • pp.165-180
    • /
    • 2009
  • The HKIB, or Hankookilbo, test collections are two archives of Korean newswire stories manually categorized with semi-hierarchical or hierarchical category taxonomies. The base newswire stories were made available by the Hankook Ilbo (The Korea Daily) for research purposes. At first, Chungnam National University and KISTI collaborated to manually tag 40,075 news stories with categories by semi-hierarchical and balanced three-level classification scheme, where each news story has only one level-3 category (single-labeling). We refer to this original data set as HKIB-40075 test collection. And then Yonsei University and KISTI collaborated to select 20,000 newswire stories from the HKIB-40075 test collection, to rearrange the classification scheme to be fully hierarchical but unbalanced, and to assign one or more categories to each news story (multi-labeling). We refer to this modified data set as HKIB-20000 test collection. We benchmark a k-NN categorization algorithm both on HKIB-20000 and on HKIB-40075, illustrating properties of the collections, providing baseline results for future studies, and suggesting new directions for further research on Korean text categorization problem.

Two-Dimensional Binary Search on Length Using Bloom Filter for Packet Classification (블룸 필터를 사용한 길이에 대한 2차원 이진검색 패킷 분류 알고리즘)

  • Choe, Young-Ju;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.245-257
    • /
    • 2012
  • As one of the most challenging tasks in designing the Internet routers, packet classification is required to achieve the wire-speed processing for every incoming packet. Packet classification algorithm which applies binary search on trie levels to the area-based quad-trie is an efficient algorithm. However, it has a problem of unnecessary access to a hash table, even when there is no node in the corresponding level of the trie. In order to avoid the unnecessary off-chip memory access, we proposed an algorithm using Bloom filters along with the binary search on levels to multiple disjoint tries. For ACL, FW, IPC sets with about 1000, 5000, and 10000 rules, performance evaluation result shows that the search performance is improved by 21 to 33 percent by adding Bloom filters.

THE CALIBRATION ESTIMATION USING TWO-STEP NEWTON'S ALGORITHM IN TWO-PHASE SAMPLING

  • Son, Chang-Kyoon;Yum, Joon-Keun
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.237-245
    • /
    • 2000
  • In this paper, we consider to the adjustment weighting procedure in the two phase sampling scheme. In general, the unit nonresponses may be occured in the final survey operation. When the unit nonresponse be generated in survey, it is able to use the auxiliary variable for estimating of interest variable. In this viewpoint, we use the two kinds level of auxiliary variable, $X_{1k}$ and $X_{2k}$ for the calibration procedure. We proprose the two-step Newton's method in the calibration estimation procedure for the two phase sampling.

Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map (KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발)

  • Song, Ji-Yong;Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.686-697
    • /
    • 2018
  • Due to the advance in remote sensing technology, it has become easier to more frequently obtain high resolution imagery to detect delicate changes in an extensive area, particularly including forest which is not readily sub-classified. Time-series analysis on high resolution images requires to collect extensive amount of ground truth data. In this study, the potential of land coverage mapas ground truth data was tested in classifying high-resolution imagery. The study site was Wonju-si at Gangwon-do, South Korea, having a mix of urban and natural areas. KOMPSAT-3A imagery taken on March 2015 and land coverage map published in 2017 were used as source data. Two pixel-based classification algorithms, Support Vector Machine (SVM) and Random Forest (RF), were selected for the analysis. Forest only classification was compared with that of the whole study area except wetland. Confusion matrixes from the classification presented that overall accuracies for both the targets were higher in RF algorithm than in SVM. While the overall accuracy in the forest only analysis by RF algorithm was higher by 18.3% than SVM, in the case of the whole region analysis, the difference was relatively smaller by 5.5%. For the SVM algorithm, adding the Majority analysis process indicated a marginal improvement of about 1% than the normal SVM analysis. It was found that the RF algorithm was more effective to identify the broad-leaved forest within the forest, but for the other classes the SVM algorithm was more effective. As the two pixel-based classification algorithms were tested here, it is expected that future classification will improve the overall accuracy and the reliability by introducing a time-series analysis and an object-based algorithm. It is considered that this approach will contribute to improving a large-scale land planning by providing an effective land classification method on higher spatial and temporal scales.

Video and Film Rating Algorithm using EEG Response Measurement to Content: Focus on Sexuality

  • Kwon, Mahnwoo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.862-869
    • /
    • 2020
  • This study attempted to analyze human brain responses toward visual content through EEG signals and intended to measure brain wave reactions of different age groups to determine the sexuality level of the media. The experimental stimuli consist of three different video footage (rated ages 12, 15, and 18) to analyze how subjects react in situations where they actually watch sexual content. For measuring and analyzing brain wave reactions, EEG equipment records alpha, beta, and gamma wave responses of the subjects' left and right frontal lobes, temporal lobes, and occipital lobes. The subjects of this study were 28 total and they are divided into two groups. The experiment configures a sexual content classification scale with age or gender as a discriminating variable and brain region-specific response frequencies (left/right, frontal/temporal/occipital, alpha/beta/gamma waves) as independent variables. The experimental results showed the possibility of distinguishing gender and age differences. The apparent differences in brain wave response areas and bands among high school girls, high school boys, and college students are found. Using these brain wave response data, this study explored the potential of developing algorithm for measurement of age-specific responses to sexual content and apply it as a film rating.

Pattern Recognition of Meteorological fields Using Self-Organizing Map (SOM)

  • Nishiyama Koji;Endo Shinichi;Jinno Kenji
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.9-18
    • /
    • 2005
  • In order to systematically and visually understand well-known but qualitative and rotatively complicated relationships between synoptic fields in the BAIU season and heavy rainfall events in Japan, these synoptic fields were classified using the Self-Organizing Map (SOM) algorithm. This algorithm can convert complex nonlinear features into simple two-dimensional relationships, and was followed by the application of the clustering techniques of the U-matrix and the K-means. It was assumed that the meteorological field patterns be simply expressed by the spatial distribution of wind components at the 850 hPa level and Precipitable Water (PW) in the southwestern area including Kyushu in Japan. Consequently, the synoptic fields could be divided into eight kinds of patterns (clusters). One of the clusters has the notable spatial feature represented by high PW accompanied by strong wind components known as Low-Level Jet (LLJ). The features of this cluster indicate a typical meteorological field pattern that frequently causes disastrous heavy rainfall in Kyushu in the rainy season. From these results, the SOM technique may be an effective tool for the classification of complicated non-linear synoptic fields.

  • PDF