• 제목/요약/키워드: Two-level Classification algorithm

검색결과 57건 처리시간 0.032초

인지무선통신 기반의 이중 분류법 알고리즘을 적용한 백스케터 통신의 성능 (Performance of Backscatter Communications Using Two-Level Classification Algorithm Based on Cognitive Radio Sensor Networks)

  • 김도균;홍승관;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.52-57
    • /
    • 2016
  • 백스케터 신호는 신호의 세기가 미약하여 신호 간섭과 채널 영향에 큰 영향을 받는다. 본 논문에서는 백스케터 통신을 위한 주파수 대역을 찾는 인지 무선 통신 시스템 기반의 이중 알고리즘을 제안한다. 이중 알고리즘은 유휴 채널과 에너지 효율에 대한 정보와 주파수 채널의 상태를 파악하여 최적의 주파수 채널을 제공한다. 시뮬레이션 결과를 통해 본 논문에서 제안한 알고리즘을 적용한 백스케터 통신의 성능을 확인하고, 백스케터 통신에서 제안한 알고리즘의 성능향상을 입증한다.

A Study on the Performance Enhancement of Radar Target Classification Using the Two-Level Feature Vector Fusion Method

  • Kim, In-Ha;Choi, In-Sik;Chae, Dae-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.206-211
    • /
    • 2018
  • In this paper, we proposed a two-level feature vector fusion technique to improve the performance of target classification. The proposed method combines feature vectors of the early-time region and late-time region in the first-level fusion. In the second-level fusion, we combine the monostatic and bistatic features obtained in the first level. The radar cross section (RCS) of the 3D full-scale model is obtained using the electromagnetic analysis tool FEKO, and then, the feature vector of the target is extracted from it. The feature vector based on the waveform structure is used as the feature vector of the early-time region, while the resonance frequency extracted using the evolutionary programming-based CLEAN algorithm is used as the feature vector of the late-time region. The study results show that the two-level fusion method is better than the one-level fusion method.

Hierarchical Clustering Approach of Multisensor Data Fusion: Application of SAR and SPOT-7 Data on Korean Peninsula

  • Lee, Sang-Hoon;Hong, Hyun-Gi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.65-65
    • /
    • 2002
  • In remote sensing, images are acquired over the same area by sensors of different spectral ranges (from the visible to the microwave) and/or with different number, position, and width of spectral bands. These images are generally partially redundant, as they represent the same scene, and partially complementary. For many applications of image classification, the information provided by a single sensor is often incomplete or imprecise resulting in misclassification. Fusion with redundant data can draw more consistent inferences for the interpretation of the scene, and can then improve classification accuracy. The common approach to the classification of multisensor data as a data fusion scheme at pixel level is to concatenate the data into one vector as if they were measurements from a single sensor. The multiband data acquired by a single multispectral sensor or by two or more different sensors are not completely independent, and a certain degree of informative overlap may exist between the observation spaces of the different bands. This dependence may make the data less informative and should be properly modeled in the analysis so that its effect can be eliminated. For modeling and eliminating the effect of such dependence, this study employs a strategy using self and conditional information variation measures. The self information variation reflects the self certainty of the individual bands, while the conditional information variation reflects the degree of dependence of the different bands. One data set might be very less reliable than others in the analysis and even exacerbate the classification results. The unreliable data set should be excluded in the analysis. To account for this, the self information variation is utilized to measure the degrees of reliability. The team of positively dependent bands can gather more information jointly than the team of independent ones. But, when bands are negatively dependent, the combined analysis of these bands may give worse information. Using the conditional information variation measure, the multiband data are split into two or more subsets according the dependence between the bands. Each subsets are classified separately, and a data fusion scheme at decision level is applied to integrate the individual classification results. In this study. a two-level algorithm using hierarchical clustering procedure is used for unsupervised image classification. Hierarchical clustering algorithm is based on similarity measures between all pairs of candidates being considered for merging. In the first level, the image is partitioned as any number of regions which are sets of spatially contiguous pixels so that no union of adjacent regions is statistically uniform. The regions resulted from the low level are clustered into a parsimonious number of groups according to their statistical characteristics. The algorithm has been applied to satellite multispectral data and airbone SAR data.

  • PDF

다중해상도 개념을 이용한 기계 부품의 유사성 비교 (Similarity Comparison of Mechanical Parts)

  • 홍태식;이건우;김성찬
    • 한국CDE학회논문집
    • /
    • 제11권4호
    • /
    • pp.315-325
    • /
    • 2006
  • It is very often necessary to search for similar parts during designing a new product because its parts are often easily designed by modifying existing similar parts. In this way, the design time and cost can be reduced. Thus it would be nice to have an efficient similarity comparison algorithm that can be used anytime in the design process. There have been many approaches to compare shape similarity between two solids. In this paper, two parts represented in B-Rep is compared in two steps: one for overall appearances and the other for detail features. In the first step, geometric information is used in low level of detail for easy and fast pre-classification by the overall appearance. In the second step, feature information is used to compare the detail shape in high level of detail to find more similar design. To realize the idea above, a multi resolution algorithm is proposed so that a given solid is described by an overall appearance in a low resolution and by detail features in high resolution. Using this multi-resolution representation, parts can be compared based on the overall appearance first so that the number of parts to be compared in high resolution is reduced, and then detail features are investigated to retrieve the most similar part. In this way, computational time can be reduced by the fast classification in the first step while reliability can be preserved by detail comparison in the second step.

Artificial Neural Network for Quantitative Posture Classification in Thai Sign Language Translation System

  • Wasanapongpan, Kumphol;Chotikakamthorn, Nopporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1319-1323
    • /
    • 2004
  • In this paper, a problem of Thai sign language recognition using a neural network is considered. The paper addresses the problem in classifying certain signs conveying quantitative meaning, e.g., large or small. By treating those signs corresponding to different quantities as derived from different classes, the recognition error rate of the standard multi-layer Perceptron increases if the precision in recognizing different quantities is increased. This is due the fact that, to increase the quantitative recognition precision of those signs, the number of (increasingly similar) classes must also be increased. This leads to an increase in false classification. The problem is due to misinterpreting the amount of quantity the quantitative signs convey. In this paper, instead of treating those signs conveying quantitative attribute of the same quantity type (such as 'size' or 'amount') as derived from different classes, here they are considered instances of the same class. Those signs of the same quantity type are then further divided into different subclasses according to the level of quantity each sign is associated with. By using this two-level classification, false classification among main gesture classes is made independent to the level of precision needed in recognizing different quantitative levels. Moreover, precision of quantitative level classification can be made higher during the recognition phase, as compared to that used in the training phase. A standard multi-layer Perceptron with a back propagation learning algorithm was adapted in the study to implement this two-level classification of quantitative gesture signs. Experimental results obtained using an electronic glove measurement of hand postures are included.

  • PDF

다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구 (The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms)

  • 김정훈;김민용;권오병
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2020
  • 기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.

2진 패턴분류를 위한 신경망 해밍 MAXNET설계 (Neural Hamming MAXNET Design for Binary Pattern Classification)

  • 김대순;김환용
    • 전자공학회논문지B
    • /
    • 제31B권12호
    • /
    • pp.100-107
    • /
    • 1994
  • This article describes the hardware design scheme of Hamming MAXNET algorithm which is appropriate for binary pattern classification with minimum HD measurement between stimulus vector and storage vector. Circuit integration is profitable to Hamming MAXNET because the structure of hamming network have a few connection nodes over the similar neuro-algorithms. Designed hardware is the two-layered structure composed of hamming network and MAXNET which enable the characteristics of low power consumption and fast operation with biline volgate sensing scheme. Proposed Hamming MAXNET hardware was designed as quantize-level converter for simulation, resulting in the expected binary pattern convergence property.

  • PDF

무구속적 방법으로 측정된 심전도의 신뢰도 판별 (Quality Level Classification of ECG Measured using Non-Constraint Approach)

  • 김윤재;허정;박광석;김성완
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권5호
    • /
    • pp.161-167
    • /
    • 2016
  • Recent technological advances in sensor fabrication and bio-signal processing enabled non-constraint and non-intrusive measurement of human bio-signals. Especially, non-constraint measurement of ECG makes it available to estimate various human health parameters such as heart rate. Additionally, non-constraint ECG measurement of wheelchair user provides real-time health parameter information for emergency response. For accurate emergency response with low false alarm rate, it is necessary to discriminate quality levels of ECG measured using non-constraint approach. Health parameters acquired from low quality ECG results in inaccurate information. Thus, in this study, a machine learning based approach for three-class classification of ECG quality level is suggested. Three sensors are embedded in the back seat, chest belt, and handle of automatic wheelchair. For the two sensors embedded in back seat and chest belt, capacitively coupled electrodes were used. The accuracy of quality level classification was estimated using Monte Carlo cross validation. The proposed approach demonstrated accuracy of 94.01%, 95.57%, and 96.94% for each channel of three sensors. Furthermore, the implemented algorithm enables classification of user posture by detection of contacted electrodes. The accuracy for posture estimation was 94.57%. The proposed algorithm will contribute to non-constraint and robust estimation of health parameter of wheelchair users.

자율주행 개인화를 위한 순환 최소자승 기반 융합형 주행특성 구분 알고리즘 (A RLS-based Convergent Algorithm for Driving Characteristic Classification for Personalized Autonomous Driving)

  • 오광석
    • 한국융합학회논문지
    • /
    • 제8권9호
    • /
    • pp.285-292
    • /
    • 2017
  • 본 논문은 자율주행 개인화를 위한 순환 최소자승 기반 융합형 종방향 주행특성 구분 알고리즘에 관한 연구이다. 최근 자율주행 기술은 Level 4 완전 자율주행 단계를 위해 다양한 연구가 수행되고 있다. 자율주행 자동차의 상용화를 위해서는 탑승자의 자율주행에 대한 이질감을 최소화할 수 있어야 하며 이를 위해 자율주행 개인화 기술이 필요하다. 이 문제를 해결하기 위해 본 연구에서는 운전자의 종방향 주행특성을 수학적으로 표현하고 순환 최소자승 기법 기반 실 주행 데이터를 이용하여 주행특성을 도출하는 알고리즘을 제안하였다. 두 명의 실제 운전자 데이터를 이용하여 종방향 주행특성을 도출하였으며 두 명의 운전자를 구분하기 위해 가설검정 기반 확률적 구분 알고리즘을 적용하였다. 제안된 종방향 주행특성 도출 및 구분 알고리즘은 개별 운전자의 주행특성을 합리적으로 나타낼 수 있었으며 가설검정 기반 확률적 구분기법에 의해 주행특성이 구분될 수 있음을 확인하였다.

Classification of Textured Images Based on Discrete Wavelet Transform and Information Fusion

  • Anibou, Chaimae;Saidi, Mohammed Nabil;Aboutajdine, Driss
    • Journal of Information Processing Systems
    • /
    • 제11권3호
    • /
    • pp.421-437
    • /
    • 2015
  • This paper aims to present a supervised classification algorithm based on data fusion for the segmentation of the textured images. The feature extraction method we used is based on discrete wavelet transform (DWT). In the segmentation stage, the estimated feature vector of each pixel is sent to the support vector machine (SVM) classifier for initial labeling. To obtain a more accurate segmentation result, two strategies based on information fusion were used. We first integrated decision-level fusion strategies by combining decisions made by the SVM classifier within a sliding window. In the second strategy, the fuzzy set theory and rules based on probability theory were used to combine the scores obtained by SVM over a sliding window. Finally, the performance of the proposed segmentation algorithm was demonstrated on a variety of synthetic and real images and showed that the proposed data fusion method improved the classification accuracy compared to applying a SVM classifier. The results revealed that the overall accuracies of SVM classification of textured images is 88%, while our fusion methodology obtained an accuracy of up to 96%, depending on the size of the data base.