• 제목/요약/키워드: Two-layer Turbulence Model

검색결과 104건 처리시간 0.027초

Effects of upstream two-dimensional hills on design wind loads: A computational approach

  • Bitsuamlak, G.;Stathopoulos, T.;Bedard, C.
    • Wind and Structures
    • /
    • 제9권1호
    • /
    • pp.37-58
    • /
    • 2006
  • The paper describes a study about effects of upstream hills on design wind loads using two mathematical approaches: Computational Fluid Dynamics (CFD) and Artificial Neural Network (NN for short). For this purpose CFD and NN tools have been developed using an object-oriented approach and C++ programming language. The CFD tool consists of solving the Reynolds time-averaged Navier-Stokes equations and $k-{\varepsilon}$ turbulence model using body-fitted nearly-orthogonal coordinate system. Subsequently, design wind load parameters such as speed-up ratio values have been generated for a wide spectrum of two-dimensional hill geometries that includes isolated and multiple steep and shallow hills. Ground roughness effect has also been considered. Such CFD solutions, however, normally require among other things ample computational time, background knowledge and high-capacity hardware. To assist the enduser, an easier, faster and more inexpensive NN model trained with the CFD-generated data is proposed in this paper. Prior to using the CFD data for training purposes, extensive validation work has been carried out by comparing with boundary layer wind tunnel (BLWT) data. The CFD trained NN (CFD-NN) has produced speed-up ratio values for cases such as multiple hills that are not covered by wind design standards such as the Commentaries of the National Building Code of Canada (1995). The CFD-NN results compare well with BLWT data available in literature and the proposed approach requires fewer resources compared to running BLWT experiments.

MIT 요동 익형의 수치해석 : 비정상 유동 특성 (Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics)

  • 배상수;강동진;김재원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

MIT 요동 익형의 수치해석 (Numerical Simulation of MIT Flapping Foil Experiment)

  • 강동진;배상수
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.777-784
    • /
    • 2000
  • A Navier-Stokes code based on an unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number ${\kappa}-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for the whole experimental domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. The first harmonics of the velocity in the boundary layer shows local peak value inside the boundary layer and also local minimum near the edge of boundary layer. It is intensified as it develops along the blade surface. This is shown to be caused as the unsteadiness inside the boundary layer is being convected at a speed less than the free stream value. It is also shown that there is negligible mixing of the unsteadiness between the boundary layer and the free stream.

다공성 벽면(porous-wall)과 거칠기가 있는 벽면(rough-wall)에 관한 경계조건을 이용한 초음속 흐름의 수치모사 (NUMERICAL SIMULATIONS OF SUPERSONIC FLOWS USING POROUS AND ROUGH WALL BOUNDARY CONDITIONS)

  • 곽인근;유일용;이동훈;이승수
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.23-30
    • /
    • 2009
  • The existing code which solves two-dimensional RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was modified to enable numerical simulation of various supersonic flows. For this, various boundary conditions have been implemented to the code. Bleed boundary condition was incorporated into the code for calculating wall mean flow quantities. Furthermore, boundary conditions for the turbulence quantities along rough surfaces as well as porous walls were applied to the code. The code was verified and validated by comparing the computational results against the experimental data for the supersonic flows over bleed region on a flat plate. Furthermore, numerical simulations for supersonic shock boundary layer interaction with a bleed region were performed and their results were compared with the existing computational results.

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

종방향 와동과 난류경계층의 상호작용에 관한 수치해석 (Numerical Simulation on Interactions of Longitudinal Vortices in a Turbulent Boundary Layer)

  • 양장식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.637-644
    • /
    • 2005
  • This paper describes the numerical simulation of the interaction between longitudinal vortices ("common flow up") and a 3-D turbulent boundary layer over a flat plate To analyze the common flow up Produced from vortex generators. the flow field behind the vortex generators Is modeled by the information that is available from studies on a half-delta winglet. Also. the Reynolds-averaged Navier-Stokes equation for three-dimensional turbulent flows. together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of AF-ADI. The computational results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall Also. the numerical results. such as Reynolds stresses. turbulent kinetic energy and skin friction characteristics generated from the vortex generators . are reasonably close to the experimental data.

비정수압 자유수면 모형의 3차원 점성 흐름에의 적용 (Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows)

  • 최두용
    • 한국수자원학회논문집
    • /
    • 제45권4호
    • /
    • pp.349-360
    • /
    • 2012
  • 본 연구에서는 3차원 점성 흐름에 적용될 수 있는 비정수압 자유수면 모형을 수평방향 직교 곡선좌표계에서 개발하였다. 개발된 수치모형은 엇갈린 격자를 사용함으로써 발생되는 자유수면에서의 경계조건 종결 문제를 수면층 방정식을 도입하여 해결하였으며, 난류의 유동 해석을 위한 폐합식으로 등방성의 k-${\varepsilon}$ 난류모형을 이용하였다. 본 연구에서 운동량방정식은 이송-확산항만으로 중간단계의 유속을 예측하고, 압력 및 중력을 포함하는 생성항과 연속방정식을 결합하여 다음 시간단계의 유동장을 결정하는 계산 단계 분리법을 이용하였다. 수치모형의 적용성 평가를 위하여 폐쇄된 2차원 수조에서의 취송류, 급경사를 가지는 2차원 수로에서의 흐름, 원심력에 의한 이차류 흐름특성 분석을 위한 3차원 급변 만곡류에 대한 모의를 실시하였다. 수치모의 예측치는 수리모형 실험값과 수위, 유속, 난류특성 등에서 일치하는 양상을 보이는 것이 확인되었다.

초음속 비정상 직열배치공동 유동에 관한 수치적 연구 (Numerical Study of Unsteady Supersonic Flow over Tandem Cavities)

  • 송병호;박남은;김재수
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.10-16
    • /
    • 2003
  • 초음속 유동장에서 비정상 직열배치공동 유동 연구를 Navier-Stokes 방정식과 k-$\varepsilon$난류모델을 이용하여 수치 모사하였다. 공동주위의 비정상유동은 자유 전단층과 공동 내부 유동의 상호 작용에 의한 주기성으로 특정지어진다. 수치적 방법은 van Leer의 유량한계계수를 이용한 유량벡터분리법에 기반을 둔 TVD방법을 사용하였다. 먼저, 단일 공동에 대한 압력비 그래프를 통한 주진동 주파수를 비교하였다. 직열배치공동유동에서는 전후방 공동을 몇가지 세장비로 조합하여, 전방 공동의 영향에 의한 후방 공동 유동장의 주진동 주파수 특성등을 분석하였다. 전방공동의 세장비가 작은 경우에는 강한 전방공동의 전단층이 후방공동의 전단츨과 합하여 하나의 전단층 특성을 줌으로 전후방 공동의 주진동특성이 비슷하게 나타나고, 전방공동의 세장비가 큰경우에는 전방공동의 전단층이 확산되면서 내부에 후방공동의 전단층이 발생함으로 주진동수의 특성이 다르게 나타나는 것을 볼 수 있었다.

후방 계단 주위의 난류 유동 수치 해석 (Numerical Computation of Turbulent Flow over a Backward Facing Step)

  • ;반석호;김형태
    • 한국해양공학회지
    • /
    • 제10권3호
    • /
    • pp.44-49
    • /
    • 1996
  • 후방계단(backward facting step) 주위의 난류 유동 특성을 수치 해석을 통해 파악하고자 하였다. 지배방정식은 2차 정도의 유한 차분 기법으로 이산화하였으며 비교차격자계를 사용하여 양해법으로 계산하였다. 난류 모형으로는 이층 모형(two-layer)을 사용하였고 압력 Poisson 방정식을 이용하여 압력과 속도를 연성 시켰다. Re=44,000인 경우에 대해 계산 결과로 부터 후방 계단 뒤의 속도 벡터, 유선, 압력 및 속도 분포, 재부착 길이(reattachment length)등의 실험치와 비교하였다. 본 계산에 사용한 수치 해석 기법은 박리등이 포함된 복잡한 난류 유동 현상을 잘 재현할 수 있음을 확인할 수 있었다.

  • PDF

3차원 난류경계층 내에 존재하는 종방향 와동의 유동특성에 관한 수치적 연구 (A Numerical Simulation of Longitudinal Vortex in Turbulent Boundary Layers)

  • 양장식;이기백
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.802-813
    • /
    • 2000
  • This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data.