• 제목/요약/키워드: Two-layer Flow

검색결과 737건 처리시간 0.106초

투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성 (Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability)

  • 지명국;배강렬;정효민;정한식;추미선
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.996-1007
    • /
    • 2019
  • We investigated the influence of the aspect ratio (H/R) of the oxide layer on the reactor vessel heating in three-layer configuration. Based on the analogy between heat and mass transfers, we performed mass transfer experiments to achieve high Rayleigh numbers ranging from $6.70{\times}10^{10}$ to $7.84{\times}10^{12}$. Two-dimensional (2-D) semi-circular apparatuses having the internal heat source were used whose surfaces of top, bottom and side simulate the interfaces of the oxide layer with the light metal layer, the heavy metal layer, and the reactor vessel, respectively. Multi-cell flow pattern was identified when the H/R was reduced to 0.47 or less, which promoted the downward heat transfer from the oxide layer and possibly mitigated the focusing effect at the upper metallic layer. The top boundary condition greatly affected the natural convection of the oxide layer due to the presence of secondary flows underneath the cold light metal layer.

비정상 열확산 현상 의 실험적 연구 (Experimental study of unsteady thermally stratified flow)

  • 이상준;정명균
    • 대한기계학회논문집
    • /
    • 제9권6호
    • /
    • pp.767-776
    • /
    • 1985
  • 본 연구에서는 초기 조건(입구 R$_{i}$수)의 변화에 따른 속도 분포, 온도 분 포, 확산율, 계면의 변화등을 연구하며, 난류 혼합과 계면의 불안정에 기인한 속도장 과 온도장의 변화과정을 가시화 사진과 비교 분석한다.다.

성토제 하부에 매설된 사석층의 침투특성 (Seepage Characteristics of Embedded Rock Layer Under the Earth Fill)

  • 이행우;장병욱
    • 한국지반공학회논문집
    • /
    • 제21권8호
    • /
    • pp.63-72
    • /
    • 2005
  • 해안매립 및 방조제 공사 시 바닥사석은 장비의 이동성 및 현장 시공성을 개선하기 위하여 포설된다. 그러나 공사완료 후 이러한 바닥사석층은 상부 구조물에 치명적인 침투피해의 원인으로 작용하나 이러한 바닥사석층에 대한 침투특성이 규명되지 않아 바닥사석층이 있는 구조물의 정확한 침투거동 파악이 곤란하다. 보통 사석층내의 침투는 Non-Darcy 흐름으로 알려져 있지만, 성토층 등 지중에 매설된 사석층 내의 침투는 Darcy 흐름 또는 Non-Darcy 흐름인지는 아직까지 명확히 파악되지 않고 있다. 따라서 본 연구에서는 성토지반에 매설되어 있는 사석층의 침투특성을 파악하기 위하여 수치해석, 실내모형실험, 현장조사 등 다각적인 방법으로 접근하였다. 그 결과 성토지반내 사석층의 침투는 Darcy 흐름으로 가정하고 유도한 해석모형에 의해 계산한 침윤선과 실내모형에서 실측한 침윤선을 서로 비교한 결과 $95\%(\alpha=0.05)$ 신뢰구간에서 유의성이 있었으며, 실내모형실험에서 구한 유속에 대한 레이놀즈 수가 10미만의 층류이고, 유속과 동수경사가 비례관계로 나타났다. OO 방조제를 대상으로 바닥사석층까지 보링을 하고 측정한 투수계수와 동수경사로부터 계산한 Darcian 유속에 대해서는 레이놀즈 수가 $1\~6$ 범위의 층류로 나타났다. 이상의 결과로 보아 성토지반에 매설되어 있는 사석층내의 침투는 층류의 Darcy 흐름일 가능성이 높다고 판단된다.

PIV를 이용한 직렬배열에서의 두 정사각기둥 주위의 유동특성에 관한 연구 (A Study on Characteristics of the Flow Around Two Square Cylinders in a Tandem Arrangement Using Particle Image Velocimetry)

  • 김동건;이종민;성승학;윤순현
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1199-1208
    • /
    • 2005
  • The flow fields including velocities, turbulence intensities, Reynolds shear stress and turbulent kinetic energy were investigated using particle image velocimetry(PIV) to study the flow characteristics around two square cylinders in a tandem arrangement. The experiments were carried out in the range of the spacing from 1.0 to 4.0 widths of cylinder, Reynolds number of 5.3$\times$10$^{3}$ and 1.6$\times$10$^{4}$ respectively. Discontinuous jumping at the drag coefficient variation was found for two cylinders simultaneously when the spacing between two cylinders is varied. This phenomenon is attributed to a sudden change of the flow pattern which depends on the reattachment of the shear layer separated from the upstream cylinder. Near such a critical spacing, the changes of the flow fields as well as the effect of Reynolds number were studied in detail.

Numerical simulation of air layer morphology on flat bottom plate with air cavity and evaluation of the drag reduction effect

  • Hao, W.U.;Yongpeng, O.U.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.510-520
    • /
    • 2019
  • To investigate the morphology characteristics of air layer in the air cavity, a numerical method with the combination of RANS equations and VOF two-phase-flow model is proposed for a plate with air cavity. Based on the model above, the dynamic and developmental process of air layer in the air cavity is studied. Numerical results indicate that the air layer in the plate's air cavity exhibits the dynamic state of morphology and the wavelength of air layer becomes larger with the increasing speed. The morphology of air layer agrees with the Froude similarity law and the formation of the air layer is not affected by the parameters of the cavity, however, the wave pattern of the air layer is influenced by the parameters of the cavity. The stable air layer under the air cavity is important for the resistance reduction for the air layer drag reduction.

Flow Field Change before Onset of Flow Separation

  • Hasegawa, Hiroaki;Sugawara, Takeru
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권3호
    • /
    • pp.215-222
    • /
    • 2009
  • Jets issuing through small holes in a wall into a freestream has proven effective in the control of flow separation. This technique is known as the vortex generator jet (VGJs) method. If a precursor signal of separation is found, the separation control system using VGJs can be operated just before the onset of separation and the flow field with no separation is always attained. In this study, we measured the flow field and the wall static pressure in a two-dimensional diffuser to find a precursor signal of flow separation. The streamwise velocity measurements were carried out in the separated shear layer and spectral analysis was applied to the velocity fluctuations at some angles with respect to the diffuser. The pattern of peaks in the spectral analysis changes as the divergence angle increases over the angle of which the whole separation occurs. This change in the spectral pattern is related to the enhancement of the growth of shear layer vortices and appears just before the onset of separation. Therefore, the growth of shear layer vortices can be regarded as a precursor signal to flow separation.

비정렬 격자에서 Ghost Fluid 법을 이용한 밀도약층 주위 수중운동체에 의한 유동 해석 (NUMERICAL ANALYSIS OF FLOW AROUND A SUBMERGED BODY NEAR A PYCNOCLINE USING THE GHOST FLUID METHOD ON UNSTRUCTURED GRIDS)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.70-76
    • /
    • 2005
  • A two-layer incompressible time-accurate Euler solver is applied to analyze flow fields around a submerged body moving at a critical speed near a pycnocline. Discontinuities in the dependent variables across the material interface are captured without any dissipation or oscillation using the ghost fluid method on an unstructured grid. It is shown that the material interlace has significant effects on forces acting on a submerged body moving near a pycnocline regardless of the small difference in densities of two layers. Contrary to the shallow water waves, a submerged body can reach a critical speed at very low Froude number due to the small difference in the densities of the two layers.

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

두 개의 원형 실린더 주위의 유동 패턴 (Flow pattern in the presence of two nearby circular cylinders)

  • 이경준;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2851-2856
    • /
    • 2007
  • Flow patterns in the presence of two identical nearby circular cylinders at =100 were numerically studied. We considered all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. Eight distinct flow patterns were identified based on vorticity contours and streamlines, which are Base-Bleed, Biased-Base-Bleed, Shear- Layer-Reattachment, Induced-Separation, Vortex-Impingement, Flip-Flopping, Modulated Periodic, and Synchronized-Vortex-Shedding. Collecting all the numerical results, we propose a general flow pattern diagram for flows past the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use this diagram to distinguish flow patterns in the presence of two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

  • PDF