• Title/Summary/Keyword: Two-fluid stratified flow model

Search Result 14, Processing Time 0.029 seconds

An explicit approximation of the central angle for the curved interface in double-circle model for horizontal two-phase stratified flow

  • Taehwan Ahn;Dongwon Jeong;Jin-Yeong Bak;Jae Jun Jeong;Byongjo Yun
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3139-3143
    • /
    • 2024
  • Stratified flow in horizontal tubes is frequently observed in gas-liquid two-phase flow system. In the two-fluid modeling, it is important to define the interface shape in solving the balance equations to determine the key parameters such as the interfacial transfer terms, void fraction, and pressure drop. A double-circle model is usually introduced to depict the concave-down interface in a horizontal circular tube under the stratified-wavy flow condition. However, calculation of the central angle in the double-circle model, which represents the interfacial curvature, requires an appropriate iterative numerical root-finding scheme to solve the implicit transcendental equation. In this study, an explicit approximate equation has been proposed without requirement of the iterative scheme and numerical instability, which is expected to improve the coding process and computation efficiency in the analysis code with the two-fluid model.

Computation of Stratified Flows using Finite Difference Lattice Boltzmann Method

  • Kang, Ho-Keun;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.511-519
    • /
    • 2003
  • A stratified flow is simulated using the finite difference lattice Boltzmann method (FDLBM). The effect of body force (gravity) in a simple one-dimensional model with the lattice BGK 9 velocity is examined. The effect of body force in the compressible fluid is greatly different from that of the incompressible fluid In a compressible fluid under gravitational force, the density stratification is not sufficient and the entropy stratification is essential. The numerical simulation of a line sink compressible stratified flow in two-dimensional channel is also carried out. The results show that selective withdrawal is established when the entropy of the upper part increases. and the simulated results using FDLB method are satisfactory compared with the theoretical one.

Three-Dimensional Numerical Simulation of Intrusive Density Currents

  • An, Sangdo
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1223-1232
    • /
    • 2014
  • Density currents have been easily observed in environmental flows, for instance turbidity currents and pollutant plumes in the oceans and rivers. In this study, we explored the propagation dynamics of density currents using the FLOW-3D computational fluid dynamics code. The renormalization group (RNG) $k-{\varepsilon}$ scheme, a turbulence numerical technique, is employed in a Reynold-averaged Navier-Stokes framework (RANS). The numerical simulations focused on two different types of intrusive density flows: (1) propagating into a two-layer ambient fluid; (2) propagating into a linearly stratified fluid. In the study of intrusive density flows into a two-layer ambient fluid, intrusive speeds were compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting propagation speed of the density currents. We also numerically reproduced the effect of the ratio of current depth to the overall depth of fluid. The numerical model provided excellent agreement with the analytical values. It was also clearly demonstrated that RNG $k-{\varepsilon}$ scheme within RANS framework is able to accurately simulate the dynamics of density currents. Simulations intruding into a continuously stratified fluid with the various buoyancy frequencies are carried out. These simulations demonstrate that three different propagation patterns can be developed according to the value of $h_n/H$ : (1) underflows developed with $h_n/H=0$ ; (2) overflows developed when $h_n/H=1$ ; (3) intrusive interflow occurred with the condition of 0 < $h_n/H$ < 1.

A Theoretical Analysis on Pressure Loss and Gas Volumetric Fraction of Gas-Liquid Two-Phase Flow (기액이상류의 압력손실과 가스상의 체적분율에 관한 이론적 해석)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 2009
  • Gas volumetric fractions and pressure loss are very important parameters in understanding and predicting gas-liquid two-phase flows. They are also essential to design large heat exchanging system in many industries, boiler and refrigerating systems mounted at ships. This paper therefore presents a theoretical method of predicting the pressure loss and gas volumetric fractions in gas-liquid two-phase flows for the whole range of pipe inclinations. The theoretical analysis is based on the two-fluid stratified flow model. It also provides the results of the comparisons between this theoretical analysis results and previous experimental results.

  • PDF

A New Transition Criterion for Stratified and Nonstratified Flows in Pipes

  • Sung, Chang-Kyung;Chun, Moon-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.219-226
    • /
    • 1996
  • A two-step approach has been used to obtain a new transition criterion for the stratified and nonstratified flow in horizontal pipe: (1) In the first step, a more general expression than the existing models for the flow transition criterion has been derived from the analysis of singular points and neutral stability conditions, or the parallel lines conditions of the transient one-dimensional two- phase flow equations of two-fluid model. (2) In the second step, introducing simplifications and incorporating a parameter into the general expression obtained in the first step to satisfy a number of physical conditions a priori specified, a new simple flow transition criterion for horizontal pipes has been derived. Comparison between results predicted by the present theory with the experimental data and theories in the pipe flow conditions, show good agreement.

  • PDF

Numerical Study for Experiment on Wave Pattern of Internal Wave and Surface Wave in Stratified Fluid (성층화된 유체 내에서 내부파와 표면파의 파형 변화 실험을 위한 수치적 연구)

  • Lee, Ju-Han;Kim, Kwan-Woo;Paik, Kwang-Jun;Koo, Won-Cheol;Kim, Yeong-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.236-244
    • /
    • 2019
  • Internal waves occur at the interface between two layers caused by a seawater density difference. The internal waves generated by a body moving in a two-layer fluid are also related to the generation of surface waves because of their interaction. In these complex flow phenomena, the experimental measurements and experimental set-up for the wave patterns of the internal waves and surface waves are very difficult to perform in a laboratory. Therefore, studies have mainly been carried out using numerical analysis. However, model tests are needed to evaluate the accuracy of numerical models. In this study, the various experimental conditions were evaluated using CFD simulations before experiments to measure the wave patterns of the internal waves and surface waves in a stratified two-layer fluid. The numerical simulation conditions included variations in the densities of the fluids, depth of the two-layer fluid, and moving speed of the underwater body.

A Study of Liquid Nitrogen Inert Gas System for LNGC Diesel Engine Crank Chamber (LNGC 디젤기관 크랭크 챔버용 액체질소 불활성가스 시스템에 관한 연구)

  • Choi, Bu-Hong;Kim, Hyun-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.279-285
    • /
    • 2012
  • It is necessary to install the inert gas system(IGS) for preventing fire and explosion in LNGC main diesel engine crankcase besides oil mist detector(OMD) unit with $CO_2$ gas injector. Therefore, to design the liquid nitrogen IGS, analytical work is conducted for predicting the heat input load of liquid nitrogen heater with two-phase stratified flow model. This paper also presents the effects of changes in pipe diameter, saturated pressure, and inclination angle by ship's movement on cryogenic two-phase stratified flows. It is found that the stratified model gives reasonable predictions, and the model is effective to predict the heat input load of liquid nitrogen IGS.

ON THE MODELLING OF TWO-PHASE FLOW IN HORIZONTAL LEGS OF A PWR

  • Bestion, D.;Serre, G.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.871-888
    • /
    • 2012
  • This paper aims at presenting the state of the art, the recent progress, and the perspective for the future, in the modelling of two-phase flow in the horizontal legs of a PWR. All phenomena relevant for safety analysis are listed first. The selection of the modelling approach for system codes is then discussed, including the number of fluids or fields, the space and time resolution, and the use of flow regime maps. The classical two-fluid six-equation one-pressure model as it is implemented in the CATHARE code is then presented and its properties are described. It is shown that the axial effects of gravity forces may be correctly taken into account even in the case of change of the cross section area or of the pipe orientation. It is also shown that it can predict both fluvial and torrential flow with a possible hydraulic jump. Since phase stratification plays a dominant role, the Kelvin-Helmholtz instability and the stability of bubbly flow regime are discussed. A transition criterion based on a stability analysis of shallow water waves may be used to predict the Kelvin-Helmholtz instability. Recent experimental data obtained in the METERO test facility are analysed to model the transition from a bubbly to stratified flow regime. Finally, perspectives for further improvement of the modelling are drawn including dynamic modelling of turbulence and interfacial area and multi-field models.

Bubble-driven Convective Flow in the Liquid with Temperature Gradient (온도구배가 있는 액체 내에서 기포가 유발하는 대류유동)

  • Bae, Dae-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.65-72
    • /
    • 2011
  • Numerical simulation has been performed to investigate the bubbly flow in the liquid with vertical temperature gradient. The objective of this study is to establish an accurate numerical prediction program of gas-liquid two-phase flows in a vertical temperature gradient condition, whose mathematical model is formulated by the Eulerian-Lagrangian model. The present numerical results reveal the temperature mixing mechanism and the fluid dynamical characteristics induced by the bubbly flow in the liquid with stratified temperature. The effects of bubble radius, void fraction, and gas flow rate on bubble-driven convective flow are considered, too.

Design and Performance Evaluation of Visualization System for Measuring the Void Fraction of Two-phase Flow (다상 유동 Void Fraction 가시화 장치 설계 및 성능 평가)

  • Choi, Chang-Hyun;Choi, Seong-Won;Song, Simon
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • A two-phase flow observed in a heat exchanger or nuclear power generation often has a profound effect on undesirable noise or flow characteristics. Void fraction, which refers to the ratio of gas (or liquid) to the total fluid, affects heat transfer coefficient, vibration and so forth. In other words, void fraction is one of most important parameters in two-phase flow since it contributes to comprehend the characteristics of two-phase flow. We developed a two-phase flow visualization system to measure cross-sectional and volumetric void fractions by using quick closing valves and image processing software. With this system, we could observe the plug, slug, and stratified flow patterns of two-phase flow and measure a myriad of void fractions. As a consequence of the experiment, we found that the estimated void fractions were largely coincident with the predictive values by Chisholm model.