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Abstract

A stratified flow is simulated using the finite difference lattice Boltzmann method
(FDLBM). The effect of body force (gravity) in a simple one-dimensional model with the
lattice BGK 9 velocity is examined. The effect of body force in the compressible fluid is
greatly different from that of the incompressible fluid. In a compressible fluid under
gravitational force, the density stratification is not sufficient and the entropy
stratification is essential. The numerical simulation of a line sink compressible
stratified flow in two-dimensional channel is also carried out. The results show that
selective withdrawal is established when the entropy of the upper part increases, and
the simulated results using FDLB method are satisfactory compared with the
theoretical one.

1. Introduction the fluid is compressible, and it is

insufficient in the selective withdrawal

The effect of gravity in the compressible criteria of stratified fluids®. In the

fluid is greatly different from that of the  compressible fluid, even though there are

incompressible fluid. In the many cases in which the concepts such as

incompressible fluid, the fluid is stable potential temperature are used, it is

when  density increases downward, convenient to introduce an entropy
whereas the fluid pattern becomes stratification as a general concept'.

unstable when it is reversed™?. However, In this report, we examine the effect of

the density changes due to pressure when  body force (gravity) in finite difference
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lattice Boltzmann method(FDLBM) using
a simple one-dimensional model. Then the

s
phenomenon™®

selective withdrawal
which is a typical phenomenon in the
stratified flow, is simulated, using the
lattice BGK compressible fluid model, to

confirm the effectiveness of this model.

2. Lattice BGK Model

In this section we present a brief
description of the FDLB method™” which
was developed from lattice Boltzmann
method(LBM)® " The basic approach of
the FDLB method is to construct a lattice
on which one solves for the evolution of a
particle distribution function that obeys a
lattice Boltzmann equation. The following
lattice Boltzmann equation with BGK
collision term describes the evolution of
the distribution f(x, d

flx+ crt+0)=Flx, D+ Q; (1

Here. the real number f{x,{ is the mass
of fluid at each lattice node x, and time
step ¢, moving in direction i.

The discrete lattice BGK equation, a
simplified version of the discrete lattice
Boltzmann equation,

f{x. D + affx, D _

ot tea g == b flx -0 0] (2)

is used. The
associated with Eq. (2) can be viewed as

microscopic dynamics
a two-step process of movement and

collision. In the collision step, the

distribution functions at each site relax
toward a state of local equilibrium. The
collision operator £2; in Eq. (1) conserves

local mass, momentum and Kkinetic

(512)

energy, while the parameter ¢ in Eq. (2)
controls the rate at which the system
equilibrium of

relaxes to the local

O, 0.

Ay

K
KK

Fig. 1 Two-dimentional space lattice

The local
function in Eq. (2) is expressed as

distribution
113l

equilibrium

= Fip[1-2Bc jquo+ 2B (c 1)
(3)

+ Bu*— % B cu)?—2B%c ,-,,uau2]

The moving particles are allowed to move
2¢, 3¢, V2¢

lattice in

with five kinds of speed, c,

and 2V2c¢, and the
two-dimentional is shown in Fig. 1.

space

3. The Effect of Body Force

In LB method. the body force is added
at the collision stage of the particle as a
change of the discrete momentum(flow
velocity). Hence. it is necessary to take
an average of the distribution function
after the collision process and after the
movement process. However, the collision
and translation process in FDLB method

is simultaneously evaluated in order to
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perform an Eulerian calculation.

For simplicity, we just consider the
case of a one-dimensional model as shown
in Fig. 2, where the gravity works
downward in the direction perpendicular
to x-direction. When the gravity and
buoyancy due to the pressure gradient
match, it is considered that the fluid has
reached a steady state at the macroscopic
viewpoint.

Using the advance Euler method for the
time term and the first order up-wind
scheme for the convective term, the
difference equation for the collision term

of BGK(Eq.(2)) model becomes as follows:

fi‘”(y)=f?(y)+Af[—{cl fl(y)_.i;(y_ Ay)}

- U= 0] (g

Sy +4Ay)

ytAy +
S (y+4y)
fim(y)

y 4 l g

fzn (y)
A (y—4ay)

y-Ay
S (y=A4y)

Fig. 2 One-dimensional lattice under the effect of
gravity in FDLBM

fé’”(y)zfé’(y)wLAt[—{cz fz(y)—jA‘;(y‘ Ay)}

— A= PO (5

Here. the suffixes 1 and 2 denote the
upward and downward velocity particles,

and 2y is the lattice width, respectively.
The particle velocities are given as ¢;=1
in 1 direction and ¢;,=—1 in 2 direction.

After the collision stage, the equilbrium
distribution functions for ¥ and s

can be rewritten as,

£ =(1-7 &f 1) (®)

FO =i+ 5 el 1) =(1+5e)r 3 (D)
(= F1()=F3»)

The variation of the distribution function
at the time step n and n+1 have to be "0”
so that the difference solution does not
change with time. Namely, the big
parenthesized passage of the difference
equations (4) and (5) have to be 0"

Then, the related expressions are written

as,
1) =Fi(y—oy(l+o) ! (8)
— iy Ay)(l—ﬁ"r—% o+ )
F3=F3y—ay(1-6) (9)
=fy—2y(1—-6)
Here, 6 is (1/24)gat and 6 << 1. From

the egs. (8) and (9), it is well known that
¢° in f}(» and f3(»).

In Fig. 3, the gravity g is made to
change from 0.01 to 0.03, and the size of
an error in the flow velocity in each case

an error is

is logarithmically plotted to the gravity g.
Here. v, represents an error of the flow

velocity. From the figure, it is well

known that logwv, becomes the I1st

function of logg. and the gradient shows

2. Namely, an error of the flow velocity
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£(<@). This

corresponds with the analytical result, as

changes in proportion to

stated above, that an error of & order
state of the
between the

exists in a steady

gravitational field
function f7 and f3.
Tsutahara et al.(1998)"¥ has confirmed
that the error of

distribution
@ occurs, when a
similar analysis on gravitational field in
a steady state is carried out in LB
method.

logg

Fig. 3 Gravity dependence of velocity error in
FDLB method

However, in FDLB method, when the
effect of gravity or other body force is
considered, it seems to be possible to
carry out the numerical simulation with

an error which is less than LB method.

4. Stratified Flows

4.1 Entropy and Potential Density

In the model, the

pressure p is defined as p= ep related to

two-dimensional

the density o and the internal energy e,

and the entropy s from the related

thermodynamics is obtained, respectively

(514)

by,
s:clog(%> (10)

where the specific heats r is given by

(D+2)/D, and D is the number of spatial

dimensions. Therefore the related
equation is expressed as,
s o« loge— logp. (11)

On the other hand, in geophysical fluid,
the concept of potential density is often
used. and it is a concept equal to the
entropy stratification. The fluid is in a
stable state when the potential density
decreases upward, whereas the fluid is
unstable in its reverse condition. In other
words, the distribution of the potential
density corresponds to the density
distribution.

Here, the Froude number Fr is defined
by using the density distribution at the
channels of the upper and lower sides. In
case that there is no disturbance in the

flow, the physical quantity is represented

by the suffix B. Then, the potential
density is expressed as,
_ & 1/r
o= Po( b5 ) (12)
where the suffix 0 represents the

standard position. The suffies 1 and 2 as
the standard positions denote the lower
side and the upper side in the channel,
respectively. '

Accordingly, the buoyancy frequency N
and the Froude number F» of the flow

are defined as follows.

1/2
_[_g Pr” Pm
N( g Lo ) (13)
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Fig. 4 Simulated two-dimensional line sink flow

- @
F?’ Ndz (].4)
Here, d is the channel height and @ is
the flowrate of the fluid.

4.2 Line Sink Flow in a Stratified Fluid

A phenomenon of the line sink flow in a
entropy stratified fluid is simulated. A
two-dimensional channel with solid walls
established to the top. the bottom and
the right side wall is considered, and the
left side extended infinitely, as shown in
Fig.4.

The stratified fluid in this region drain
out at the sink that is located at the
right corner starting from a quiescent
At the solid walls,
boundary condition of particle is applied.

state. a reflection
Namely, particles reaching the solid wall
are rebounded with a velocity distribution
which
distribution function.

given by the equilibrium
The velocity of
sinking is set to 0.02 in the entire region,
and the width of the sink is made to 3
nodes. The gravitational force and the
time step are £=0.02 and 2¢=0.01, and
the relaxation time coefficient ¢ varies at
each calculation. The viscosity coefficient
« relating the relaxation time coefficient
iIs changed by the calculation, and is

chosen to keep a numerical stability. At

(515)

the initial conditions, the fluid density is
0=1.0, and the

internal energy e has the mean value

uniformly set to be

between the top wall and the bottom
At first, the
without the sinking under the gravity,

wall. calculation starts
and then the sinking starts when the
fluid almost reaches the steady state.
The fluid of the lower part receives a
compression when the gravity works,
then the internal energy (temperature)
increases toward the upper part. Due to
the energy diffusion(temperature
conduction), the entropy of the upper
part increases because of internal energy
which is delivered to the upper part, and
the non-uniformity of the entropy in the
entire region occurs. Consequently. the
entropy stratification can be built up by
changing the boundary condition of the
internal energy at the upper and lower

part.

5. Results and Discussion

The following results show that the

fluid flow almost reaches the steady
state.

Figure 5(a) shows the velocity field and
streamlines under the uniform entropy.
The internal energies at the upper(suffix
2) and lower(suffix 1) wall are fixed at
e¢;=0.83 and e;=0.87, respectively. Even
though the density increases toward the
lower part due to the gravity, the entropy
in the whole
(b) and (¢)). In this
case, the fluid flows to the sink point

from the whole region, and it coincides

is uniformly distributed
region (see Figs.

with a flow where the density is
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distributed in an
fluid. In the of
uniform entropy stratification, the flow is

uniformly
incompressible case
under the condition of neutral stability,
and therefore, as shown in Fig. 5, the
flow drains out from the whole region.

(a) Velocity vectors and streamlines

354302

3.28677 .

(b) Entropy

3.58705

——a17409— — — -

4.82636

(¢c) Density

Fig. 5 Flow field in an uniform entropy stratified
flow

Fig. 6 Velocity vectors and streamlines in the
stable entropy stratification

(516)
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Figure 6 shows the velocity vectors and
streamlines, which is the stable entropy
but the
stratification.  The
energies at the upper and lower wall are

stratification not sufficient

entropy internal

made to be ¢, =0.5, e,=1.0, respectively.

In the Figure. we certainly note that a

dividing stream line appears and a

stagnation flow occurs at the upper right
it makes a circulating

portion, where

flow; however, the flow drains out the

sink node at the whole region.

(a) Velocity vectors and streamlines

5.32638

(b) Entropy

1.33305

(¢) Density
Fig. 7 Flow field in a strong stable entropy
stratification

Considering the Froude number Fr

defined in Eq. (15), it becomes 0.4x107?
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and has a very small value. In case of an
inviscid - incompressible flow, the selective
withdrawal phenomenon occurs as the
fluid has a small Froude number.
the fluid drains out at the
whole region, and the Reynolds number
Re obtained by the flowrate and the

However,

kinematic viscosity is Re=50. It seems
that the effect of the viscosity is big
while the compressible effect of the fluid
appears. In an incompressible fluid, a
vorticity appears due to the pressure
which

contributes to the selective withdrawal

variation and density gradients,

phenomenon. In the mean while, in case
a fluid expansions, the effect of the sink
form of isotropic
which

sinking mouth substantially.

propagates in a
expansion wave, expands the

Figure 7 shows the flow field of strong
stable entropy stratification. where the
internal energies at the upper and lower
e1=0.5, e=1.5,

respectively. The separated stream line of

walls are put with

fluid is clearly seen in Fig. 7(a), where
the fluid of the lower half is withdrawn
to the sink node. This is a phenomenon
equal to the selective withdrawal often
observed in a reservoir, which established
the temperature stratification.

Figure 8 shows an unstable entropy
stratification when the internal energies
at the upper and lower walls are put with
e;=0.95 and e;=0.75, respectively. The

convection pattern like Benard convection
appears in the velocity vector (a) and the
density distribution (c¢). The effect of the
sink is hidden in the large fluctuation of
owing to the

a convection pattern

instability.

(517)

ﬁ

¢) Density

(
Fig. 8 Flow field in an unstable entropy
stratification

6. Conclusions

This study introduced the FDLB method
capable of modeling hydrodynamic flow
with

function and the results are summarized

simple equilibrium distribution
as follows:

(1) A simple one-dimensional model of
an incompressible fluid in FDLB method
was tested in order to confirm the effect
of the body force. At the evaluation of the
flow velocity, it was proved that errors of
the vector magnitudes in FDLB method
was less than that of LB method.

(2) Using the finite difference method
in a compressible lattice Boltzmann fluid
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model, the line sink flow which is built in
the entropy stratification was studied.
In the
stratification, the flow was
stability and drained to the
sinking node from the whole region. A

case of the wuniform entropy
under a

neutral

separated stream line appeared and a
stagnation flow occurred at the upper
part of the sinking node. when the stable
entropy stratification, but not the
sufficient entropy stratification, is built
in. However, in the case that the flow
field shows the strong stable entropy
stratification, a separated stream line
has clearly been shown, and the selective
withdrawal phenomenon which is often
observed in a reservoir has appeared. In
the flow field with the unstable entropy
stratification, a convection pattern like
but the

effect of the sink was not seen in the

Benard convection appeared.

large fluctuation of the convection

pattern due to the instability.
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