• Title/Summary/Keyword: Two-fluid nozzle

Search Result 149, Processing Time 0.025 seconds

Coupled Analysis of Thermo-Fluid-Flexible Multi-body Dynamics of a Two-Dimensional Engine Nozzle

  • Eun, WonJong;Kim, JaeWon;Kwon, Oh-Joon;Chung, Chanhoon;Shin, Sang-Joon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.70-81
    • /
    • 2017
  • Various components of an engine nozzle are modeled as flexible multi-body components that are operated under high temperature and pressure. In this paper, in order to predict complex behavior of an engine nozzle, thermo-fluid-flexible multi-body dynamics coupled analysis framework was developed. Temperature and pressure on the nozzle wall were obtained by the steady-state flow analysis for a two-dimensional nozzle. The pressure and temperature-dependent material properties were delivered to the flexible multi-body dynamics analysis. Then the deflection and strain distribution for a nozzle configuration was obtained. Heat conduction and thermal analyses were done using MSC.NASTRAN. The present framework was validated for a simple nozzle configuration by using a one-way coupled analysis. A two-way coupled analysis was also performed for the simple nozzle with an arbitrary joint clearance, and an asymmetric flow was observed. Finally, the total strain result for a realistic nozzle configuration was obtained using the one-way and two-way coupled analyses.

Effect of Swirl Angle on the Atomization Characteristics in Two-Fluid Nozzle with Dual Air Supplying System (이중공기공급 이유체노즐의 선회각 변화에 따른 분무특성)

  • Kim, E.S.;Kang, S.M.;Choi, Y.J.;Kim, D.J.;Lee, J.K.;Rho, B.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.54-60
    • /
    • 2008
  • The atomization characteristics of the dual air supplying twin-fluid nozzle were investigated experimentally using PIV and PDA systems. The two-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air and the main nozzle to produce the spray. The main nozzle has the swirl tip with four equally spaced tangential slots, which give the injecting fluid an angular momentum. The angle of the swirl tip varied with 0$^{\circ}$ 30$^{\circ}$, 60$^{\circ}$ and 90$^{\circ}$, and the ratios of carrier air to assist air and ALR(total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the mean velocity, turbulent intensity and SMD distributions of the sprays were measured using PDA system. As the results, the mean axial velocity at the spray centerline decrease with the increase of the swirl angle. The turbulent intensities of the axial and radial velocity were increased with the increase of the swirl angle. The mean SMD (Sauter mean diameter) of the radial direction along the axial distance shows the lowest value at the swirl angle of 60$^{\circ}$.

  • PDF

Effect of Swirl Angle on the Atomization Characteristics in Twin-Fluid Nozzle with Dual Air Supplying (이중공기공급 2-유체 노즐의 선회각 변화에 따른 미립화 특성)

  • Woo, J.M.;Kim, E.S.;Kim, D.J.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.126-133
    • /
    • 2008
  • The atomization characteristics of the dual air supplying two-fluid nozzle were investigated experimentally using PIV and PDA systems. The twin-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air, and the main nozzle to produce sprays. The main nozzle has the swirler with four equally spaced tangential slots, which gives the injecting fluid an angular momentum. The swirl angle in the swirler varied with $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$. The ratios of carrier air to assist air and ALR (total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the AMD and SMD distributions of the sprays were measured using PDA system. As a result, the SMD distribution increases along the radial distance, and it decreases with the increase of swirl angle in swirler.

  • PDF

A Numerical Study on Flow in a Water Jet (워터 제트내 유동장에 관한 수치해석 연구)

  • Kim, Ill-Soo;Park, Chang-Eun;Kim, Dae-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.27-32
    • /
    • 1998
  • This paper presents the development of a two-dimensional model for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard k-$\epsilon$ model was solved employing a general thermofluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

Development of a Model for Fluid Analysis of Water Jet Using Automatic Javan(Salted-dry Seaweeds) Dryer Machine (전자동 자반건조기 제작에 이용할 Water Jet의 유동해석 모델)

  • Kim, Ill-Soo;Park, Chang-Eun;Jeung, Young-Jae;Son, Joon-Sik;Nam, Ki-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.53-58
    • /
    • 1998
  • This paper concentrates on the development of a computational design program to determine nozzle size in water jet, combing the numerical optimization technique with the flow analysis code. To achieve the above objective, a two-dimensional model was developed for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard ${k}-\varepsilon$ model was solved employing a general thermo fluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

Numerical Prediction of Unsteady Flows through Whole Nozzle-Rotor Cascade Channels with Partial Admission

  • Sasao, Yasuhiro;Monma, Kazuhiro;Tanuma, Tadashi;Yamamoto, Satoru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.248-253
    • /
    • 2009
  • This paper presents a numerical study for unsteady flows in a high-pressure steam turbine with a partial admission stage. Compressible Navier-Stokes equations are solved by the high-order high-resolution finite-difference method based on the fourth-order compact MUSCL TVD scheme, Roe's approximate Riemann solver, and the LU-SGS scheme. The SST-model is also solved for evaluating the eddy-viscosity. The unsteady two-dimensional flows through whole nozzle-rotor cascade channels considering a partial admission are numerically investigated. 108 nozzle passages with two blockages and 60 rotor passages are simultaneously calculated. The influence of the flange in the nozzle box to the lift of rotors is predicted. Also the efficiency of the partial admission stage changing the number of blockages and the number of nozzles is parametrically predicted.

Experimental and Numerical Investigations on Performances of Darriues-type Hydro Turbine with Inlet Nozzle

  • Matsushita, Daisuke;Tanaka, Kei;Watanabe, Satoshi;OKuma, Kusuo;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.151-159
    • /
    • 2014
  • Low head hydropower is one of realistic renewable energies. The Darrieus-type hydro turbine with an inlet nozzle is available for such low head conditions because of its simple structure with easy maintenance. Experimental and numerical studies are carried out in order to examine the effects of gap distances between the runner pitch circle and two edges of inlet nozzle on turbine performances. By selecting narrower gaps of left and right edges, the performance could be improved. From the results of two dimensional numerical simulations, the relation between the performance and flow behaviors around the Darrieus blade are discussed to obtain the guideline of appropriate inlet nozzle design.

A Study on Design of Nozzle Tip for Airless Spray Coating (에어리스 스프레이 도장용 노즐 팁 설계에 관한 연구)

  • Kim, Dong-Keon;Kim, Soon-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.183-188
    • /
    • 2012
  • This study was carried out to design the spray nozzle tip for airless spray coating. Airless spray coating is the process of coating an object with a liquid spray of paint or other fluid. The nozzle tip controls the fluid flow rate and creates back pressure in the system. The nozzle tip also defines the spray pattern by the size and shape of the orifice. The spray pattern of nozzle tip was investigated numerically using ANSYS CFX ver. 14.0. It was observed that performance result of designed nozzle tip was correspond well, compared with that of GARCO nozzle tip.

Examination on Liquid Pool Fire Extinguishment Performance of Twin-fluid Nozzle (2유체노즐의 액체풀 화재 소화 성능에 대한 검토)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.59-64
    • /
    • 2017
  • In the present experimental study, the liquid pool fire extinguishment performance of twin-fluid nozzle was preliminarily examined. For the liquid pool fire, the ethanol of 1200 ml (volume) was prepared, and two kinds of air flow rate conditions (40 l/min and 70 l/min) were tested at the constant water flow rate condition of 632 ml/min. In the present experimental ranges, the fire extinguishment experiments were carried out using the twin-fluid nozzle and its spray characteristics (i.e., SMD (Sauter Mean Diameter) and flow distribution) were investigated. As a result, at the higher air flow rate, the liquid pool fire was extinguished quickly and successfully, which was discussed using the visualization and spray characteristics of twin-fluid nozzle. In addition, through the comparison with some of previous results, it was found that potentially, the twin-fluid nozzle can extinguish the liquid pool fire under the smaller water flow rate condition, as compared with the single-fluid nozzle.

Study on Flow Fields in Variable Area Nozzles for Radial Turbines

  • Tamaki, Hideaki;Unno, Masaru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • The flow behind the variable area nozzle which corresponds to the flow at the leading edge of the impeller was measured with a 3-hole yaw probe and calculated with CFD. Two nozzle throat-areas were investigated. One is the smallest and the other is the largest opening for the variable nozzle. Test results agreed with the calculated results qualitatively. The leakage flow through the tip clearance of the nozzle vane significantly affected the flow field downstream of the nozzle vane with the smallest opening. However, the effect on leakage flow on the flow field downstream of the nozzle vane with the largest opening was very weak and the effect of wake is dominant.