• Title/Summary/Keyword: Two-flow nozzle

Search Result 423, Processing Time 0.025 seconds

Effect of the Presence of Sub-pipes on the Performance of Water Nozzle (서브파이프의 유무에 따른 워터노즐의 성능특성연구)

  • Yi, Young-Woo;Lim, Hee-Chang
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • This paper presents a numerical analysis of flow inside a water nozzle for fire fighting and observes the effect of the variation in primary components on internal flow. In order to observe the performance of water nozzles, they have been systematically designed and modelled, applying boundary conditions obtained from field experiments (inlet pressure at pump : 4 bar, and pressure outlet : atmospheric pressure). In addition, the governing equations were calculated to obtain velocity, pressure inside the nozzle. Two main parameters (the presence and length of sub-pipes) were considered with the aim to observe the detail internal flow characteristics. It is found that the base model is not significant on flow characteristics, but a negative effect (i. e. the reverse flow) at the entrance region of sub-pipe. On the other hand, the reverse flow was vanished when making the length of sub-pipe double.

Atomization Characteristics of Effervescent Twin-fluid Nozzle with Different Nozzle Shapes (노즐 형상에 따른 Effervescent 이유체 노즐의 분무특성)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.146-152
    • /
    • 2017
  • An experimental study was carried out to investigate the spray characteristics of non-circular effervescent twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and circular nozzle (C) were used. Three types of aerorators with hole diameters of 1.2, 1.7 and 2.1 mm were used. Each aerorator has a total of 12 holes. It is defined by area ratio which is ratio of exit orifice area and aerator hole area. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzles. The discharge coefficients of the three kinds of nozzles were compared with the used in plain orifice's equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 3 times larger. In addition, empirical formula based on ALR, which is the largest variable in Jedelsky's equation, was derived. The droplet sizes(SMD) were found to be smaller in the non-circular shape than in the circular shape, which is concluded to be caused by the difference of the discharge coefficients.

Analytical Methods of Leakage Rate Estimation from a Containment tinder a LOCA (냉각수상실 사고시 격납용기로부터 누출되는 유체유량 추산을 위한 해석적 방법)

  • Moon-Hyun Chun
    • Nuclear Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.121-129
    • /
    • 1981
  • Three most outstanding maximum flow rate formulas are identified from many existing models. Outlines of the three limiting mass flow rate models are given along with computational procedures to estimate approximate amount of fission products released from a containment to environment for a given characteristic hole size for containment-isolation failure and containment pressure and temperature under a loss of coolant accident. Sample calculations are performed using the critical ideal gas flow rate model and the Moody's graphs for the maximum two-phase flow rates, and the results are compared with the values obtained from the mass leakage rate formula of CONTEMPT-LT code for converging nozzle and sonic flow. It is shown that the critical ideal gas flow rate formula gives almost comparable results as one can obtain from the Moody's model. It is also found that a more conservative approach to estimate leakage rate from a containment under a LOCA is to use the maximum ideal gas flow rate equation rather than tile mass leakage rate formula of CONTEMPT-LT.

  • PDF

Evaluation of a Wafer Transportation Speed for Propulsion Nozzle Array on Air Levitation System

  • Moon, In-Ho;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1492-1501
    • /
    • 2006
  • A transportation system of single wafer has been developed to be applied to semiconductor manufacturing process of the next generation. In this study, the experimental apparatus consists of two kinds of track, one is for propelling a wafer, so called control track, the other is for generating an air film to transfer a wafer, so called transfer track. The wafer transportation speed has been evaluated by the numerical and the experimental methods for three types of nozzle position a..ay (i.e., the front-, face- and rear-array) in an air levitation system. Test facility for 300mm wafer has been equipped with two control tracks and one transfer track of 1500mm length from the starting point to the stopping point. From the present results, it is found that the experimental values of the wafer transportation speed are well in agreement with the computed ones. Namely, the computed values of the maximum wafer transportation speed $V_{max}$ are slightly higher than the experimental ones by about $15{\times}20%$. The disparities in $V_{max}$ between the numerical and the experimental results become smaller as the air velocity increases. Also, at the same air flow rate, the order of wafer transportation speeds is : $V_{max}$ for the front-array > $V_{max}$ for the face-array > $V_{max}$ for the rear-array. However, the face-array is rather more stable than any other type of nozzle array to ensure safe transportation of a wafer.

Experimental and Computational Studies of FSS-RSS Phenomena in an Over-Expanded Nozzle (과팽창 노즐 내에 발생하는 FSS-RSS 현상에 관한 실험적 및 수치해석적 연구)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.56-62
    • /
    • 2010
  • The interaction patterns between shock wave and boundary layer in a rocket nozzle are mainly classified into two categories, FSS(Free Shock Separation) and RSS(Restricted Shock Separation), both of which are associated with the thrust characteristics as well as side loads of the engine. According to the previous investigations, strong side loads of the engine are produced during the period of transition from FSS to RSS or vice versa. The present work aims at investigating the unsteady behavior of the separation shock waves in a two-dimensional supersonic nozzle, using experimental method and CFD. Schlieren optical method was employed to visualize the time-mean and time-dependent shock motions in the nozzle. The unsteady, compressible N-S equations with SST K-$\omega$ turbulence closure were solved using a fully implicit finite volume scheme. The results obtained show the separation shock motions during the transition of the interaction pattern.

An Analysis of Flashing Jet Behavior of Pressurized Water (물제트의 노즐 입구온도변화에 따른 증발특성 해석)

  • KIM, BOOSANG;KIM, HAKDEOK;LIM, HEECHANG;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.585-592
    • /
    • 2019
  • In this study, a flashing boiling phenomenon of pressurized water jet was numerically studied and validated against an experimental data in the literatures. The volume of fluid (VOF) technique was used to consider two-phase behavior of water, while the homogeneous relaxation model (HRM) model was used to provide the velocity of phase change. During the flashing boiling through a nozzle, a mach disk was observed near nozzle exit because of pressure drop resulting from two-phase under-expansion. The flashing jet structure, local distributions of temperature/vapor volume fraction/velocity, and position of the mach disk were examined as nozzle inlet temperature changed.

A Study on the Bubble Behavior in the Vertical-upward Gas Injection (수직상향 기체주입시 기포거동에 관한 연구)

  • Seo, Dong-Pyo;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.712-716
    • /
    • 2003
  • In the present study, the gas injection system based on air-water model was designed to investigate the behavior characteristics of bubbles injected into a ladle. The parameters such as gas volume fraction and bubble rise velocity were exprementally measured in a gas-liquid flow region. To measure gas volume fraction, an electo-conductivity probe was used and bubble rise velocity was obtained by a high speed CCD camera. Gas volume fraction was symmetric to the axis of nozzle secured on the bottom of a ladle. The bubble rise velocity was calculated for two different experimental conditions. That is, gas flow conditions were following two case: 1) Q = $0.63{\times}10^{-4}$ $m^{3}/s$, 2) $1.26{\times}10^{-4}$ $m^{3}/s$. As a gas injected into the liquid ladle, the liquid-phase region is circulated by bubbles' behavior. The bubble rise velocity was influenced of the circulation flow of liquid phase. As a result, the bubble rise velocity was appeared higher middle region of ladle than near the nozzle.

  • PDF

Aerodynamic Shape Design of a Partial Admission Turbine Using CFD (CFD를 이용한 부분흡입형 터빈 공력형상 설계)

  • Lee, Eun-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1131-1138
    • /
    • 2006
  • Aerodynamic shape design of a partial admission turbine using CFD has been performed. Two step approaches are adopted in this study. Firstly, two-dimensional blade shape is optimized using CFD and genetic algorithm. Initially, the turbine cascade shape is represented by four design parameters. By controlling the design parameters as variables, the non-gradient search is analyzed for obtaining the maximum efficiency. The final two-dimensional blade proved to have a more blade power than the initial blade. Secondly, the three-dimensional CFD analysis including the nozzle, rotor and stator has been conducted. To avoid a heavy computational load due to an unsteady calculation, the frozen rotor method is implemented in steady calculation. The frozen rotor method can detect a variation of the flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a better idea of wake loss mechanism starting from the lip of the nozzle than the mixing plane concept. Finally, the combination of two and three dimensional design method of the partial admission turbine in this study has proven to be a robust tool in development phase.

Measurements and Analysis on Hydroelastic Flow-Structure Interactions (유체-구조 유탄성 연성운동 측정해석)

  • Doh, D.H.;Jo, H.J.;Hwang, T.G.;Cho, K.R.;Pyeon, Y.B.;Cho, Y.B.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.53-54
    • /
    • 2006
  • Experimental analyses on the Hydroelastic Flow-Structure Interactions on pulsed impinged jet is measured with the FSIMS(Flow-Structure Interaction Measurement System. The nozzle diameter is D=15mm and two major experiments have been carried out for the cases of the distance between the nozzle tip to the elastic wall is 6.0. The pulsed jets were controlled by a solenoid valve and were impinged onto an elastic plate (material: silicon, diameter: 350mm, thickness: 0.5mm, hardness: 15). The Reynolds numbers were 20,000 and 24,000 when the jets were impinged with the volume velocities. The results showed that the elastic plate moved slightly to the opposite direction of the jet direction at the time of valve opening. It has been shown that the vortices travelling over the surface of the wall made the elastic wall distorted locally due to a vector forces between rotating forces of the vortex and a newly-incoming flow.

  • PDF

Characteristic Analysis of High Speed Inkjet Printing Head for Digital Textile Printing (디지털날염용 고속 구동형 잉크젯 프린팅 헤드의 특성해석)

  • Lee, Duck-Gyu;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.421-426
    • /
    • 2018
  • To develop a piezoelectric inkjet printhead for high-resolution and high-speed printing, we studied the characteristics of an inkjet printhead by analyzing the major design parameters. An analytical model for the inkjet printhead was established, and numerical analysis of the coupled first-order differential equation for the defined state variables was performed using state equations. To design the dimension of the inkjet printhead with a driving frequency of 100 kHz, the characteristics of the flow rate and discharge pressure of the nozzle were analyzed with respect to design variables of the flow chamber, effective sound wave velocity, driving voltage, and voltage waveform. It was predicted that the change in the height of the flow chamber does not significantly affect the Helmholtz resonance frequency and discharge speed of the nozzle. From the analysis of change in flow chamber width, it is observed that as the width of the flow chamber increases, the ejection speed greatly increases and the Helmholtz resonance frequency decreases considerably, thereby substantially affecting the performance of the inkjet printhead.