• Title/Summary/Keyword: Two-dimensional temperature

Search Result 1,047, Processing Time 0.024 seconds

Three-dimensional cure simulation of composite structures by the finite element method (유한요소법을 이용한 복합재 구조물의 3차원 경화 수치모사)

  • Min, Kuoung-Jae;Park, Hoon-Cheol;Yoon, Kwang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.39-45
    • /
    • 2002
  • In this paper, a finite element formulation was introduced for the three-dimensional cure simulation of composite structures. Based on the formulation, a three-dimensional finite element code was developed. Numerical examples found in the literatures were solved for code verification. Results from the present analyses agreed well with the measured cure-induced temperatures. Unlike in one or two dimensional analysis, temperature and degree of cure were able to be calculated at any point within composite structures in the present analysis. The finite element program can be used for the cure simulation of composite structures with arbitrary geometry under non-uniform autoclave temperature distribution.

ONE-DIMENSIONAL ANALYSIS OF THERMAL STRATIFICATION IN THE AHTR COOLANT POOL

  • Zhao, Haihua;Peterson, Per F.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.953-968
    • /
    • 2009
  • It is important to accurately predict the temperature and density distributions in large stratified enclosures both for design optimization and accident analysis. Current reactor system analysis codes only provide lumped-volume based models that can give very approximate results. Previous scaling analysis has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by jets modeled using integral techniques. This allows very large reductions in computational effort compared to three-dimensional CFD simulation. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was developed to implement such ideas. This paper summarizes major models for the BMIX++ code, presents the two-plume mixing experiment simulation as one validation example, and describes the codes' application to the liquid salt buffer pool system in the AHTR (Advanced High Temperature Reactor) design. Three design options have been simulated and they exhibit significantly different stratification patterns. One of design options shows the mildest thermal stratification and is identified as the best design option. This application shows that the BMIX++ code has capability to provide the reactor designers with insights to understand complex mixing behavior with mechanistic methods. Similar analysis is possible for liquid-metal cooled reactors.

Classification and multidimensional analysis of plant communities mt. moak provincial park, korea (母岳山 道立公園 植物群集의 分類와 多次元分析)

  • Kim, Jeong-Un;Yang-Jai Yim
    • The Korean Journal of Ecology
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • Ordination and classification techiques were used to analyze the forest communities and to examine the integration problem of community-to-ecological species group in mt. moak provincial park of korea. phytosociological classiication based on floristic composition produced seven commuities of zelkova serrata, carpinus densiflora. These seven communities were well discriminated in the two-dimensional analyses of soil moisture, soil organic matter content and temperature(elevation), eciprocally, and in three-dimensional space of the three environmental factors also. They corresponded to seven ecological groups derived from the distribution pattern analysis of species populations in this mountain.

  • PDF

Three-Dimensional Thermohydrodynamic Analysis of Journal Bearings Operating in Turbulent Region Using $kappa-varepsilon$ Model (난류상태로 운전되는 저어널베어링에서의 $kappa-varepsilon$ 모델을 이용한 3-차원 THD해석)

  • 이득우;김경웅
    • Tribology and Lubricants
    • /
    • v.3 no.1
    • /
    • pp.39-46
    • /
    • 1987
  • Frictional loss in turbulent regime is abnormally increased compared with in laminar regime. Thus the consideration of temperature rise across fluid film is significant in analysis and conventional isothermal theory loses its usefulness for performance prediction. This paper proposes to the three-dimensional thermohydrodynamic analysis of finite journal bearings operating under turbulent condition using two-equation model($\kappa-\varepsilon$ model) proposed by Hassid & Poreh. The equations are solved numerically by finite difference method. We make the analysis applicable even at large eccentricity when back flow of the lubricants occurs and axial flow is no longer ignored compared to circumferential flow.

Facile and Clean Synthetic Route to Non-Layered Two-Dimensional ZIF-67 Nanosheets

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • Two-dimensional (2D) metal organic framework (MOF) nanosheets (NSs) have recently gained considerable interest owing to their structural advantages, such as large surface area and exposed active sites. Two different types of 2D MOF NSs have been reported, including inherently layered MOFs and non-layered ones. Although several studies on inherently layered 2D MOFs have been reported, non-layered 2D MOFs have been rarely studied. This may be because the non-layered MOFs have a strong preference to form three-dimensionality intrinsically. Furthermore, the non-layered MOFs are typically synthesized in the presence of the surfactant or modulator, and thus developing facile and clean synthetic routes is highly pursued. In this study, a facile and clean synthetic methodology to grow non-layered 2D cobalt-based zeolitic imidazolate framework (ZIF-67) NSs is suggested, without using any surfactant and modulator at room temperature. This is achieved by directly converting ultrathin α-Co(OH)2 layered hydroxide salt (LHS) NSs into non-layered 2D ZIF-67 NSs. The comprehensive characterizations were conducted to elucidate the conversion mechanism, structural information, thermal stability, and chemical composition of the non-layered 2D ZIF-67. This facile and clean approach could produce a variety of non-layered 2D MOF NS families to extend potential applications of MOF materials.

A Numerical Analysis to Predict the Temperature Distribution around a Cold Storage Cavern (지하암반 냉동저장고 주변의 온도분포 예측을 위한 수치해석)

  • 이규상;이정인
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.287-294
    • /
    • 2004
  • To predict the temperature distribution around a underground rock storage cavern, two- and three- dimensional numerical analysis using FLAC was conducted. The effects of groundwater and latent heat on thermal properties were considered in numerical calculation. The temperature estimated by FLAC are compared with the temperature measured for 5-year operation at Gonjiam storage cavern. Estimated and measured temperatures showed great discrepancy when thermal properties from laboratory tests were used and showed good agreement when the effects from 20% of volumetric water fraction and latent heat were considered. However, the discrepancy still increased with operation time due to the heat flow from ground surface. Three-dimensional numerical models were established to closely approximate the boundary condition of the test site, and numerical results better agreement when groundwater and latent heat effects were considered.

Growth of Copper Oxide Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method (초음파 분무 열분해법을 이용한 구리산화물 박막 성장)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.516-521
    • /
    • 2018
  • Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than $350^{\circ}C$, three-dimensional structures consisting of cube-shaped $Cu_2O$ are formed, while spherical small particles of the CuO phase are formed at a temperature higher than $400^{\circ}C$ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional $Cu_2O$ thin films are preferentially deposited at a temperature less than $300^{\circ}C$, and the CuO thin film is formed even at a temperature less than $350^{\circ}C$. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.

Numerical Study on Wafer Temperature Considering Gap between Wafer and Substrate in a Planetary Reactor (Planetary 형 반응기에서 웨이퍼와 기판 사이의 틈새가 웨이퍼 온도에 미치는 영향에 대한 연구)

  • Ramadan, Zaher;Jung, Jongwan;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Multi-wafer planetary type chemical vapor deposition reactors are widely used in thin film growth and suitable for large scale production because of the high degree of growth rate uniformity and process reproducibility. In this study, a two-dimensional model for estimating the effect of the gap between satellite and wafer on the wafer surface temperature distribution is developed and analyzed using computational fluid dynamics technique. The simulation results are compared with the results obtained from an analytical method. The simulation results show that a drop in the temperature is noticed in the center of the wafer, the temperature difference between the center and wafer edges is about $5{\sim}7^{\circ}C$ for all different ranges of the gap, and the temperature of the wafer surface decreases when the size of the gap increases. The simulation results show a good agreement with the analytical ones which is based on one-dimensional heat conduction model.

  • PDF

Simultaneous Measurements of Temperature and Velocity Fields of a Buoyant Jet Using LIE and PIV Techniques (LIE와 PIV 기법을 이용한 부력제트의 온도장과 속도장 동시측정)

  • Kim Seok;Jang Young Gil;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.513-516
    • /
    • 2002
  • The flow structure and heat transfer characteristics of a turbulent buoyant jet were investigated experimentally. The instantaneous temperature and velocity fields in the near field were measured using a two-frame PIV and PLIF techniques. A thin light sheet illuminated a two-dimensional cross section of the buoyant jet in which Rhodamine B was added as a fluorescent dye. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured by a CCD camera after passing an optical filter. By ensemble averaging the instantaneous temperature and velocity fields, the mean temperature and velocity fields as well as the spatial distributions of turbulent statistics were obtained. The results show the flow structure and convective heat transfer of the developing shear layer in the near field.

  • PDF

A novel of rotating nonlocal thermoelastic half-space with temperature-dependent properties and inclined load using the dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.459-466
    • /
    • 2024
  • Eringen's nonlocal thermoelasticity theory is used to study wave propagations in a rotating two-temperature thermoelastic half-space with temperature-dependent properties. Using suitable non-dimensional variables, the harmonic wave analysis is used to convert the partial differential equations to ordinary differential equations solving the problem. The modulus of elasticity is given as a linear function of the reference temperature. MATLAB software is used for numerical calculations. Comparisons are carried out with the results in the context of the dual-phase lag model for different values of rotation, a nonlocal parameter, an inclined load, and an empirical material constant. The distributions of physical fields showed that the nonlocal parameter, rotation, and inclined load have great effects. When a nonlocal thermoelastic media is swapped out for a thermoelastic one, this approach still holds true.