• Title/Summary/Keyword: Two-dimensional numerical model

Search Result 1,398, Processing Time 0.035 seconds

Analysis on the Hydroelasticity of Whole Ship Structure by Coupling Three-dimensional BEM and FEM (3차원 경계요소법과 전선 유한요소 해석의 연성을 통한 전선 유탄성 해석)

  • Kim, Kyong-Hwan;Bang, Je-Sung;Kim, Yong-Hwan;Kim, Seung-Jo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.312-326
    • /
    • 2012
  • This paper considers a fully coupled 3D BEM-FEM analysis for the ship structural hydroelasticity problem in waves. Fluid flows and structural responses are analyzed by using a 3D Rankine panel method and a 3D finite element method, respectively. The two methods are fully coupled in the time domain using a fixed-point iteration scheme, and a relaxation scheme is applied for improve convergence. In order to validate the developed method, numerical tests are carried out for a barge model. The computed natural frequency, motion responses, and time histories of stress are compared with the results of the beam-based hydroelasticity program, WISH-FLEX, which was thoroughly validated in previous studies. This study extends to a real-ship application, particularly the springing analysis for a 6500 TEU containership. Based on this study, it is found that the present method provides reliable solutions to the ship hydroelasticity problems.

A CFD Study of the Supersonic Ejector-Pump Flows (초음속 이젝터 펌프 유동에 관한 수치해석)

  • 이영기;김희동;서태원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.58-66
    • /
    • 1999
  • The flow characteristics of supersonic ejectors is often subject to compressibility, unsteadiness and shock wave systems. The numerical works carried out thus far have been of one-dimensional analyses or some Computational Fluid Dynamics(CFD) which has been applied to only a very simplified configuration. For the design of effective ejector-pump systems the effects of secondary mass flow on the supersonic ejector flow should be fully understood. In the present work the supersonic ejector-pump flows with a secondary mass flow were simulated using CFD. A fully implicit finite volume scheme was applied to axisymmetric compressible Navier-Stokes equations. The standard two-equation turbulence model was employed to predict turbulent stresses. The results obtained showed that the flow characteristics of constant area mixing tube types were nearly independent of the secondary flow rate, but the flow fields of ejector system with the second-throat were strongly dependent on the secondary flow rate due to the effect of the back pressure near the primary nozzle exit.

  • PDF

Study on the Between the Grounding Resistance and Grounding Electrode using Mesh Grounding Electrodes and a Shielding Panel (메쉬접지전극과 차폐패넬을 이용한 접지저항 및 접지전극간의 영향에 관한 연구)

  • Leeg, Chung-sik;Cho, Moon-taek;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.230-236
    • /
    • 2015
  • In this paper, the electric potential of electrode surface is investigated by assuming them as two dimensional sets of point current sources. And, the simulated water tank is manufactured as a reduced scale of the earth. Henceforth, the adequate model electrode for test is decided to decrease experimental errors relevant to the limitation of the size of the water tank. The one of important things of this work, the deduction method of the potential interference factor is proposed, which used as the criterion of the potential interference according to the shape of conductors and the laying conditions, when multiple grounding conductors are situated at the same resistance grounding area. Also, the validity of this theory is verified from a numerical simulation of the grounding electrode to be used in experiments, and this study is realized by the verified theory and the simulated experiments.

Numerical Analysis of Fiber Reinforced Concrete Base Subjected to Environmental Loads (섬유보강 콘크리트 기층의 환경하중에 대한 거동 수치 해석)

  • Cho, Young-Kyo;Kim, Seong-Min;Park, Jong-Sub;Park, Young-Hwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.239-249
    • /
    • 2011
  • The behavior of the fiber reinforced concrete (FRC) base under environmental loads was analyzed numerically as a fundamental study to develop a high structural and functional performance composite pavement system in which the base was formed using FRC and the asphalt or cement concrete surface was placed on it. A two-dimensional finite element model of the FRC base was developed and the sensitivity study was performed with the variables including slab thickness of base, thermal expansion coefficient, elastic modulus, and tensile and compressive strengths. The crack spacing and crack width were selected as representatives of the base behavior. The effects of the selected variables on the crack spacing and crack width were analyzed and the sensitive variables were determined. The results of this study could be useful to determine the optimal material properties of the FRC base for combining well with the surface materials.

Rational Sectional Force and Design Improvement of Abutment Wing-Wall (교대 날개벽의 합리적인 단면력 산정 및 설계 개선)

  • Chung, Wonseok;Kim, Minho;An, Zu-Og;Choi, Hyukjin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.145-152
    • /
    • 2011
  • Current Bridge Specification for Highway Bridges adopts a simplified method to determine sectional forces of abutment wing by dividing its area into four sections. This simplified method was developed in Japan when numerical analysis was not mature and computer resources were expensive. This simplified method has been with us without modification. This study evaluates the problem of current design practice to improve the design guideline for abutment wing. In this study, a finite element model of abutment wing based on shell elements was developed to obtain accurate sectional force. In addition, foreign design specifications regarding abutment wing were thoroughly examined. It has been observed that sectional forces obtained from the simplified method produce inaccurate results under various geometric shapes. Thus, it is recommended that two dimensional plate analyses should be adopted for future design of abutment wing wall.

Analysis of Temperature Distribution and slip in Rapid Thermal Processing (급속 열처리시 실리콘 웨이퍼의 온도분포와 슬립 현상의 해석)

  • Lee, Hyouk;Yoo, Young-Don;Earmme, Youn-Young;Shin, Hyun-Dong;Kim, Choong-Ki
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.609-620
    • /
    • 1992
  • A numerical solution of temperature and thermally induced stress in a wafer during rapid thermal processing (R.T.P) is obtained, and an analysis of onset and propagation of slip is performed and compared with experiment. In order to calculate temperature distribution of a wafer in R.T.P system, heat conduction equation that incorporated with radiative and convective heat transfer model is solved, and the solution of the equation is calculated numerically using alternating direction implicit (A.D.I) method. In dealing with radiative heat transfer, a partially transparent body that absorbs the radiation energy is assumed and this transparent body undergoes multiple internal reflections and absorptions. Two dimensional (assuming plane stress) thermoelastic constitutive equation is used to calculate thermal stress induced in a wafer and finite element method is employed to solve the equation numerically. The stress resolved in the slip directions on the slip planes of silicon is compared with the yield stress of silicon in order to predict the slip. The result of the analysis shows that the wafer temperature at which slip occurs is affected by the heating rate of the R.T.P system. It is observed that once slip occurs in the wafer, the slip grows.

Computational Justification of Current Distribution Measurement Technique Via Segmenting Bipolar Plate in Fuel Cells (분리판 분할을 통만 연료전지의 전류분포 측정법에 대한 수치적 검증)

  • Choi, Yong-Jun;Lee, Gi-Yong;Kang, Kyung-Mun;Kim, Whan-Gi;Ju, Hyun-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Current distribution measurement technique based on a segmented bipolar plate (BP) has been widely adopted to visualize the distribution of current density in a polymer electrolyte membrane. However, a concern is raised how closely the current density of a segmented BP can approach that of a corresponding non-segmented membrane. Therefore, in this paper, the accuracy of the measurement technique is numerically evaluated by applying a three-dimensional, two-phase fuel cell model to a $100\;cm^2$ area fuel cell geometry in which segmented BPs and non-segmented membrane are combined together. The simulation results reveal that the errors between the current densities of the segmented BPs and non-segmented membrane indeed exist, predicting the maximum relative error of 33% near the U-turn regions of the flow-field. The numerical study further illustrates that the erroneous result originates from the BPs segmented non-symmetrically based on the flow channels that allows some currents bypassing flow channels to flow into its neighboring segment. Finally, this paper suggests the optimal way for bipolar plate segmentation that can minimize the deviation of current measured in a segmented BP from that of a corresponding membrane region.

ANALYSIS OF EIGEN VALUES FOR EFFECTIVE CHOICE OF SNAPSHOT DATA IN PROPER ORTHOGONAL DECOMPOSITION (적합직교분해 기법에서의 효율적인 스냅샷 선정을 위한 고유값 분석)

  • Kang, H.M.;Jun, S.O.;Yee, K.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • The guideline of selecting the number of snapshot dataset, $N_s$ in proper orthogonal decomposition(POD) was presented via the analysis of Eigen values based on the singular value decomposition(SVD). In POD, snapshot datasets from the solutions of Euler or Navier-Stokes equations are utilized to SVD and a reduced order model(ROM) is constructed as the combination of Eigen vectors. The ROM is subsequently applied to reconstruct the flowfield data with new set of flow conditions, thereby enhancing the computational efficiency. The overall computational efficiency and accuracy of POD is dependent on the number of snapshot dataset; however, there is no reliable guideline of determining $N_s$. In order to resolve this problem, the order of maximum to minimum Eigen value ratio, O(R) from SVD was analyzed and presented for the decision of $N_s$; in case of steady flow, $N_s$ should be determined to make O(R) be $10^9$. For unsteady flow, $N_s$ should be increased to make O(R) be $10^{11\sim12}$. This strategy of selecting the snapshot dataset was applied to two dimensional NACA0012 airfoil and vortex flow problems including steady and unsteady cases and the numerical accuracies according to $N_s$ and O(R) were discussed.

The Flow Variation due to Pier Construction at Kwangyang Bay (컨테이너 부두건설에 따른 광양만의 유황변동)

  • Choi, Song Yeol;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.115-125
    • /
    • 1992
  • The variation of flow pattern caused by the topographical change of Kwangyang bay, is analyzed using the numerical tidal model for the depth-integrated two- dimensional long wave equation. The results of study are as follows. Due to pier construction, the area of water surface is deceased and the water inflow into the Kwangyang bay is reduced. For this result, at the outer bay of Myo island, the tidal range is slightly increased. And at the inner bay, water level is dropped generally, and especially at the time of low water tide, the phenomena of water level drop obviously appears. According to the variation pattern, flow velocities is lower than those of non-construction condition over the Kwangyang bay. But at the channel(from Kwangyang east stream) flowing into the east Kwangyang bay, for the contraction of channel profile, flow velocity is increased. The study based on the 100 year frequency design flood discharge from Sueocheon(river) and Dongcheon(river) which are flowing into the bay and Seomjin River flowing along the boundary of the bay is also performed. During the spring tide condition, the results showed the rise of water level about 1.2 m at Seomjin River Estuary and 0.3 m at inner bay is occurred.

  • PDF

Numerical Analysis on Performance Characteristics of PEMFC with Parallel and Interdigitated Flow Channel (평행류와 Interdigitated 유로를 가진 교분자 전해질 연료전지(PEMFC)의 성능특성에 대한 수치해석)

  • Lee, Pil-Hyong;Cho, Son-Ah;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.170-177
    • /
    • 2006
  • Optimum design of flow channel in the separation plate of Proton Exchange Membrane Fuel Cell is very prerequisite to reduce concentration over potential at high current region and remove the water generated in cathode effectively. In this paper, fully 3 dimensional computational model which solves anode and cathode flow fields simultaneously is developed in order to compare the performance of fuel cell with parallel and interdigitated flow channels. Oxygen and water concentration and pressure drop are calculated and i-V performance characteristics are compared between flows with two flow channels. Results show that performance of fuel cell with interdigitated flow channel is hi민or than that with parallel flow channel at high current region because hydrogen and oxygen in interdigitated flow channel are transported to catalyst layer effectively due to strong convective transport through gas diffusion layer but pressure drop is larger than that in parallel flow channel. Therefore Trade-off between power gain and pressure loss should be considered in design of fuel cell with interdigitated flow channel.