• Title/Summary/Keyword: Two-dimensional model

Search Result 3,847, Processing Time 0.031 seconds

A TWO-DIMENSIONAL FINITE VOLUME MODEL IN NONORTHOGONAL COORDINATE SYSTEM

  • Kim, Chang-Wan;Lee, Bong-Hee;Cho, Yong-Sik;Yoon, Tae-Hoon
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.151-160
    • /
    • 2001
  • A two-dimensional flow model is newly developed. Two-dimensional shallow-water equations are discretized by the finite volume method. A nonorthogonal coordinate system is then employed. The developed model is applied to simulations of flows in a 180 degree curved bend flow. Numerical prediction are compared to available laboratory measurement. A good agreement is observed.

  • PDF

Control Strategy for Buck DC/DC Converter Based on Two-dimensional Hybrid Cloud Model

  • Wang, Qing-Yu;Gong, Ren-Xi;Qin, Li-Wen;Feng, Zhao-He
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1684-1692
    • /
    • 2016
  • In order to adapt the fast dynamic performances of Buck DC/DC converter, and reduce the influence on converter performance owing to uncertain factors such as the disturbances of parameters and load, a control strategy based on two-dimensional hybrid cloud model is proposed. Firstly, two cloud models corresponding to the specific control inputs are determined by maximum determination approach, respectively, and then a control rule decided by the two cloud models is selected by a rule selector, finally, according to the reasoning structure of the rule, the control increment is calculated out by a two-dimensional hybrid cloud decision module. Both the simulation and experiment results show that the strategy can dramatically improve the dynamic performances of the converter, and enhance the adaptive ability to resist the random disturbances, and its control effect is superior to that of the current-mode control.

A Study on the Energy Release Rate of Delaminated Composite Laminates (층간분리된 복합적층판의 에너지 방출률에 관한 연구)

  • Cheong, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

Computation of Tides for Off Kyungnam Coast with Dynamically Combined Two-Dimensional and Three-Dimensional Tidal Model (2차원 및 3차원 동적복합조석모형에 의한 경남해역의 조석산정)

  • 최병호;우승범
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.176-197
    • /
    • 1995
  • Two-dimensional and three-dimensional structures of tidal currents on southeastern waters of Korea off Kyungnam coast were investigated via a series of numerical models based on dynamic principles. With a two-dimensional tidal model, tidal regimes of major eight tidal constituents (M$_2$, S$_2$, K$_1$, O$_1$, N$_2$, K$_2$, P$_1$, Q$_1$) were computed. Model results showed that the computed results were in good agreement with coastal observations. On the basis of these results the model was further improved to compute three-dimensional structure of tidal current in inner Jinhai and Masan Bay regions of the model area where severe pollutions occur due to red tide by combination of the previous two-dimensional model and inner three-dimensional model. For this work, three-dimensional Galerkin-Spectral model and two-dimensional depth-integrated model are dynamically combined by the method presented by Davies (1980). In addition to the previous work by Davies, the advective term and quadratic bottom friction term are included in present Three-dimensional numerical model. The computed results of M$_2$ tidal current ellipses with respect to depth showed general agreements with those of current observations by KORDI (1990).

  • PDF

A Theoretical Analysis of Two Phase Existence Phenomena on Surface with the Two Dimensional Cluster Aggregation Model (2차원 클러스터 응집모형을 통한 표면 2상공존 현상에 대한 이론적 분석)

  • Choi, Sung-Ryool
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1365-1371
    • /
    • 2013
  • We have introduced two dimensional cluster aggregation model to explain theoretically two phase coexistence phenomena such that adsorption is increased sharply discontinuous in particular pressure on the surface. And then, we have derived adsorption isotherms by applying fundamental statistical thermodynamics and Lagrange multipliers to the our model. By analyzing the our derived adsorption isotherms, we can explain well qualitatively that two phase coexistence on the surface adsorption would be a phenomena that occurs with the strong attractive forces between the adsorbed particles.

Two-dimensional unsteady flow analysis with a five region turbulence models for a simple pipeline system (단순한 관망체계에서 5영역 난류 모형을 이용한 2차원 부정류 흐름 해석 연구)

  • Kim, Hyun Jun;Kim, Sangh Hyun;Baek, Da Won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.971-976
    • /
    • 2018
  • An accurate analysis of pipeline transient is important for proper management and operation of a water distribution systems. The computational accuracy and its cost are two distinct components for unsteady flow analysis model, which can be strength and weakness of three-dimensional model and one-dimensional model, respectively. In this study, we used two-dimensional unsteady flow model with Five-Region Turbulence model (FRTM) with the implementation of interaction between liquid and air Since FRTM has an empirical component to be determined, we explored the response feature of two-dimensional flow model. The relationship between friction behaviour and the variation of undetermined parameter was configured through the comparison between numerical simulations and experimental results.

Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream (하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석)

  • Ahn, Seung-Seop;Yim, Dong-Hee;Park, Ro-Sam;Kwak, Tae-Hwa
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

Analysis Approaches to Data of Both Age and Usage Attributes (시간과 사용량의 속성을 지닌 데이터의 분석방안)

  • Jo, Jin-Nam;Baik, Jai-Wook
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.1
    • /
    • pp.136-141
    • /
    • 2007
  • For many products failures depend on age and usage and, in this case, failures are random points in a two-dimensional plane with the two axes representing age and usage. Models play an important role in decision-making. In this research, an accelerate failure test (AFT) model is proposed to deal with the two-dimensional data. The parameters are proposed to be estimated through maximum likelihood estimators.

Managing quality attributes using customer satisfaction coefficient

  • Song, Hae-geun;Kim, Gwang-pil
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.157-167
    • /
    • 2017
  • The two-way quality theory has been widely used as a method for classifying quality attributes for several decades. In particular, the Kano model that classifies attributes into not just conventional one-dimensional but must-be and attractive has gained popularity due to its applicability and ease of use. However, the wordings of the five alternatives in the Kano's questionnaire has been criticised for unclear meanings. This study proposes a new two-way model to classify attributes using 5-point Likert scale alternatives. For this, the current paper investigated a case of TV sets to examine how the proposed model works in comparison with the Kano model. The application results of the proposed model are different from the original one. The two-way model classifies quality attributes in more detail such as the "one-dimensional with an attractive tendency" attribute, which has a greater influence on satisfaction than dissatisfaction, the opposite "one-dimensional with a must-be tendency" attribute, and "highly one-dimensional" and "less one-dimensional" attributes. In this study, a potential satisfaction coefficient (PSC), a potential dissatisfaction coefficient (PDC), and an average potential coefficient (APC) to manage quality attributes are proposed and discussed for their utilization.