• 제목/요약/키워드: Two-dimensional Monte Carlo analysis

검색결과 57건 처리시간 0.022초

Monte Carlo simulation에 의한 nMOSFET의 hot electron 현상해석 (Analysis of Hot Electrons in nMOSFET by Monte Carlo Simulation)

  • 민병혁;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.193-196
    • /
    • 1987
  • We reported that hot electron phenomena in submicron nMOSFET by Monte Carlo method. In order to predict the influence of the hot electron effects on the device reliability, either simple analytical model or a complete two dimensional numerical simulation has been adopted. Results of numerical simulation, based on the static mobility model, may be inaccurate when gate length of MOSFET is scaled down to less than 1um. Most of device simulation packages utilize the static nobility model. Monte Carlo method based on stochastic analysis of carrier movement may be a powerful tool to characterize hot electrons. In this work, energy and velocity distribution of carriers were obtained to predict the relative degree of short channel effects for different device parameters. Our analysis shows a few interesting results when $V_{ds}$ is 5 volt, average electron energy does not increase with gate bias as evidenced by substrate current.

  • PDF

Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark

  • Shaukat, Nadeem;Ryu, Min;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.920-927
    • /
    • 2017
  • With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.

Monte Carlo Simulation for Particle Behavior of Recycling Neutrals in a Tokamak Diverter Region

  • Kim, Deok-Kyu;Hong, Sang-Hee;Kihak Im
    • Nuclear Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.459-467
    • /
    • 1997
  • The steady-state behavior of recycling neutral atoms in a tokamak edge region has been analyzed through a two-dimensional Monte Carlo simulation. A particle tracking algorithm used in earlier research on the neutral particle transport is applied to this Monte Carlo simulation in order to perform more accurate calculations with the EDGETRAN code which was previously developed for a two-dimensional edge plasma transport in the authors' laboratory. The physical model of neutral recycling includes charge-exchange and ionization interactions between plasmas and neutral atoms. The reflection processes of incident particles on the device wall are described by empirical formulas. Calculations for density, energy, and velocity distributions of neutral deuterium-tritium atoms have been carried out for a medium-sized tokamak with a double-null configuration based on the KT-2 conceptual design. The input plasma parameters such as plasma density, ion and electron temperatures, and ion fluid velocity are provided from the EDGETRAN calculations. As a result of the present numerical analysis, it is noticed that a significant drop of the neutral atom density appears in the region of high plasma density and that the similar distribution of neutral energy to that of plasma ions is present as frequently reported in other studies. Relations between edge plasma conditions and the neutral recycling behavior are discussed from the numerical results obtained herein.

  • PDF

Analysis of Two-Dimensional Flow Fields in the Multi-Stage Turbomolecular Pump Using the DSMC Method

  • Heo, Joong-Sik;Hwang, Young-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.8-18
    • /
    • 2001
  • The direct simulation Monte Carlo Method is applied to investigate the two-dimensional flow fields of a turbomolecular pump(TMP) in both molecular and transition flow regions. The pumping characteristics of the TMP are investigated for a wide range of the Knudsen number. The maximum of compression ratio and of pumping speed strongly depend on the Knudsen number in transition region, while they weakly depend on the Knudsen number in free molecular flow region. The present numerical results show good agreement with the previously known experimental data. Finally. the results of the single blade row in both molecular and transition regions are used to predict the overall performance of a TMP, which has three kinds of blade with 24-rows.

  • PDF

화학반응을 수반하는 극초음속 희박류 유동의 직접모사법 개발 (A DSMC Technique for the Analysis of Chemical Reactions in Hypersonic Rarefied Flows)

  • 정찬홍;윤성준
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.63-70
    • /
    • 1999
  • A Direct simulation Monte-Carlo (DSMC) code is developed, which employs the Monte-Carlo statistical sampling technique to investigate hypersonic rarefied gas flows accompanying chemical reactions. The DSMC method is a numerical simulation technique for analyzing the Boltzmann equation by modeling a real gas flow using a representative set of molecules. Due to the limitations in computational requirements. the present method is applied to a flow around a simple two-dimensional object in exit velocity of 7.6 km/sec at an altitude of 90 km. For the calculation of chemical reactions an air model with five species (O₂, N₂, O, N, NO) and 19 chemical reactions is employed. The simulated result showed various rarefaction effects in the hypersonic flow with chemical reactions.

  • PDF

Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile

  • Srivastava, Amit;Sivakumar Babu, G.L.
    • Geomechanics and Engineering
    • /
    • 제3권3호
    • /
    • pp.169-188
    • /
    • 2011
  • Response of buried flexible pipe-soil system is studied, through numerical analysis, with respect to deflection and buckling in a spatially varying soil media. In numerical modeling procedure, soil parameters are modeled as two-dimensional non-Gaussian homogeneous random field using Cholesky decomposition technique. Numerical analysis is performed using random field theory combined with finite difference numerical code FLAC 5.0 (2D). Monte Carlo simulations are performed to obtain the statistics, i.e., mean and variance of deflection and circumferential (buckling) stresses of buried flexible pipe-soil system in a spatially varying soil media. Results are compared and discussed in the light of available analytical solutions as well as conventional numerical procedures in which soil parameters are considered as uniformly constant. The statistical information obtained from Monte Carlo simulations is further utilized for the reliability analysis of buried flexible pipe-soil system with respect to deflection and buckling. The results of the reliability analysis clearly demonstrate the influence of extent of variation and spatial correlation structure of soil parameters on the performance assessment of buried flexible pipe-soil systems, which is not well captured in conventional procedures.

Numerical Analysis on Deformation of Submerged Structures using 2-Dimensional VOF-DEM Model

  • Kim, Mi-Kum;Kim, Chang-Je
    • 한국항해항만학회지
    • /
    • 제31권9호
    • /
    • pp.785-791
    • /
    • 2007
  • In this paper we proposed a model that the deformation of the submerged rubble mound breakwaters composed with materials of various size, induced by wave action, can be computed. The water particle kinematics by waves in porous mound structure are computed by CADMAS-SURF, then the deformation of structure is computed using DEM module. To investigate the interaction of wave and sectional deformation of structures, analysis is accomplished by two steps. Analysis at the first step is executed with incipient mound. And analysis at the second step is executed with deformed mound by wave action. Furthermore, behaviors of materials are influenced by various properties such as the contact stiffness and the friction angle. Therefore, in order to present the behavior of the element caused by various properties, computations are accomplished with random coefficients by using the Monte Carlo simulation.

신뢰도 해석기법을 이용한 2차원 수질관리모형의 개발 (Development of 2-D Water Quality Management Model by Using Reliability Analysis)

  • 김상호;한건연;김원;최흥식
    • 한국수자원학회논문집
    • /
    • 제35권5호
    • /
    • pp.463-474
    • /
    • 2002
  • 하천에서 동수역학적 흐름해석 및 오염물질의 이송-확산 해석을 수행하고, 불확실도 해석기법을 이용하여 신뢰도 해석을 수행할 수 있는 2차원 수질관리모형인 UUWQM(Unsteady/Uncertainty Water Quality Model) 모형을 개발하였다. 본 모형의 실제 적용을 위해 낙동강 중류부의 성주에서 현풍까지 35km 구간에 대하여 2차원 동역학적 흐름해석과 수질해석이 실시되었다. 민감도 분석을 통해 수질모형에 기여도가 큰 입력변수들을 결정하였고 Monte Carlo 기법을 통하여 검증을 실시하였다. 대상구간의 주요지점에 대해 MFOSM 기법과 Monte Carlo 기법을 적용하여 수질농도의 빈도분포도를 제시하였으며, 목표 수질농도에 대한 초과확률을 산정하여 신뢰도 해석을 수행할 수 있는 수질관리시스템을 구축하였다.

Monte Carlo analysis of LWR spent fuel transmutation in a fusion-fission hybrid reactor system

  • Sahin, Sumer;Sahin, Haci Mehmet;Tunc, Guven
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1339-1348
    • /
    • 2018
  • The aim of this paper is to determine neutronic performances of the light water reactor (LWR) spent fuel mixed with fertile thorium fuel in a FFHR. Time dependent three dimensional calculations for major technical data, such as blanket energy multiplication, tritium breeding ratio, cumulative fissile fuel enrichment and burnup have been performed by using Monte Carlo Neutron-Particle Transport code MCNP5 1.4, coupled with a novel interface code MCNPAS, which is developed by our research group. A self-sustaining tritium breeding ratio (TBR>1.05) has been kept throughout the calculations. The study has shown that the fissile fuel quality will be improved in the course of the transmutation of the LWR spent in the FFHR. The latter has gained the reusable fuel enrichment level conventional LWRs between one and two years. Furthermore, LWR spent fuel - thorium mixture provides higher burn-up values than in light water reactors.

투수계수의 공간적 변동성을 고려한 층상지반에 대한 확률론적 침투해석 (Probabilistic Seepage Analysis Considering the Spatial Variability of Permeability for Layered Soil)

  • 조성은
    • 한국지반공학회논문집
    • /
    • 제28권12호
    • /
    • pp.65-76
    • /
    • 2012
  • 본 연구에서는 수리구조물이 설치된 2층으로 이루어진 포화 기초지반에서의 구속흐름(confined flow)에 대하여 확률론적 침투해석을 수행하였다. 투수계수는 지반의 층상구조에 따라 명확한 변동성을 보일 뿐 아니라 각각의 층 내에서도 공간적인 변동성을 보인다. 따라서 기존의 결정론적 침투해석기법을 층상지반에서의 투수계수의 불확실성과 공간적 변동성을 고려할 수 있도록 확률론적 해석으로 확장하였다. 각 층에 지정된 입력 확률분포함수와 자기상관함수(autocorrelation function)를 따르는 2차원의 랜덤필드를 생성하기 위하여 Karhunen-Lo$\grave{e}$ve 전개법을 사용하였다. 제안된 절차의 적용성을 검토하고 수리구조물 하부의 2층 지반을 통한 흐름에 공간적 불균질성이 미치는 영향을 연구하기 위해 생성된 랜덤필드를 이용하여 Monte Carlo 시뮬레이션을 수행하였다. 해석결과는 층상지반에서의 침투거동 평가에서 지반의 층상구조와 지층내에서의 투수계수의 공간적 변동성에 의한 지반에서의 다양한 침투패턴을 확률론적 해석기법을 통하여 효율적으로 고려할 수 있음을 보여주었다.