Lamira, Alessando;Mazzi-Chaves, Jardel Francisco;Nicolielo, Laura Ferreira Pinheiro;Leoni, Graziela Bianchi;Silva-Sousa, Alice Correa;Silva-Sousa, Yara Terezinha Correa;Pauwels, Ruben;Buls, Nico;Jacobs, Reinhilde;Sousa-Neto, Manoel Damiao
Imaging Science in Dentistry
/
v.52
no.3
/
pp.245-258
/
2022
Purpose: This study compared the root canal anatomy between cone-beam computed tomography (CBCT) and micro-computed tomography (micro-CT) images before and after biomechanical preparation and root canal filling. Materials and Methods: Isthmus-containing mesial roots of mandibular molars(n=14) were scanned by micro-CT and 3 CBCT devices: 3D Accuitomo 170 (ACC), NewTom 5G (N5G) and NewTom VGi evo (NEVO). Two calibrated observers evaluated the images for 2-dimensional quantitative parameters, the presence of debris or root perforation, and filling quality in the root canal and isthmus. The kappa coefficient, analysis of variance, and the Tukey test were used for statistical analyses(α=5%). Results: Substantial intra-observer agreement (κ=0.63) was found between micro-CT and ACC, N5G, and NEVO. Debris detection was difficult using ACC (42.9%), N5G (40.0%), and NEVO (40%), with no agreement between micro-CT and ACC, N5G, and NEVO (0.05<κ<0.12). After biomechanical preparation, 2.4%-4.8% of CBCT images showed root perforation that was absent on micro-CT. The 2D parameters showed satisfactory reproducibility between micro-CT and ACC, N5G, and NEVO (intraclass correlation coefficient: 0.60-0.73). Partially filled isthmuses were observed in 2.9% of the ACC images, 8.8% of the N5G and NEVO images, and 26.5% of the micro-CT images, with no agreement between micro-CT and ACC, and poor agreement between micro-CT and N5G and NEVO. Excellent agreement was found for area, perimeter, and the major and minor diameters, while the roundness measures were satisfactory. Conclusion: CBCT images aided in isthmus detection and classification, but did not allow their classification after biomechanical preparation and root canal filling.
This study experimentally investigates the effect of dimensionality reduction of vibration signal on fault diagnosis of a marine engine. By using the principal component analysis, a vibration signal having the dimension of 513 is converted into a low-dimensional signal having the dimension of 1 to 15, and the variation in fault diagnosis accuracy according to the dimensionality change is observed. The vibration signal measured from a full-scale marine generator diesel engine is used, and the contribution of the dimension-reduced signal is quantitatively evaluated using two kinds of variable importance analysis algorithms which are the integrated gradients and the feature permutation methods. As a result of experimental data analysis, the accuracy of the fault diagnosis is shown to improve as the number of dimensions used increases, and when the dimension approaches 10, near-perfect fault classification accuracy is achieved. This shows that the dimension of the vibration signal can be considerably reduced without degrading fault diagnosis accuracy. In the variable importance analysis, the dimension-reduced principal components show higher contribution than the conventional statistical features, which supports the effectiveness of the dimension-reduced signals on fault diagnosis.
Kim, So Yoon;Lee, Jung Bok;Ahn, Hyung Soo;Kim, Kyung Hwa;Yang, Min
Journal of the Korean Crystal Growth and Crystal Technology
/
v.31
no.4
/
pp.149-153
/
2021
ε-Ga2O3 thin films were grown on 4H-SiC substrates by metal organic chemical vapor deposition (MOCVD) and crystalline quality were evaluated depend on growth conditions. It was found that the best conditions of the ε-Ga2O3 were grown at a growth temperature of 665℃ and an oxygen flow rate of 200 sccm. Two-dimensional growth was completed after the merge of hexagonal nuclei, and the arrangement direction of hexagonal nuclei was closely related to the crystal direction of the substrate. However, it was confirmed that crystal structure of the ε-Ga2O3 had an orthorhombic rather than hexagonal. Crystal phase transformation was performed by thermal treatment. And a β-Ga2O3 thin film was grown directly on 4H-SiC for the comparison to the phase transformed β-Ga2O3 thin film. The phase transformed β-Ga2O3 film showed better crystal quality than directly grown one.
The development of innovative technology through the 4th Industrial Revolution is actively used in the defense field. In particular, surveillance and reconnaissance capabilities using drones will be of great help to the development of military combat capabilities, such as preparing for future military personnel reductions and reinforcing alert capabilities. In this study, we analyze the combat efficiency of drones how helpful drones can be to the military operations through simulations. Drones and enemy move in the efficient shortest path within a two-dimensional space in which operational areas are mapped into number such as detection probability. Based on the detection probability of an enemy infiltrating along the path with the lowest detection probability, the detection probability change that occurs whenever a drone is additionally deployed is presented, and we analyze the combat efficiency according to the additional drone input. Simulation proves that the increase in combat efficiency decreases as more drones are added in small operational areas such as company-level operational areas. This study is expected to contribute to the efficient operation of a limited number of drones in company-level units and to help determine the most desirable quantity of drones for additional combat power improvement.
This study aims to investigate the characteristics of wave generation in a deep ocean engineering basin and to develop a meta-model of the transfer function of the wavemaker that reflects the geometric characteristics of the deep ocean engineering basin. To this end, the two-dimensional frequency domain boundary element method was applied to achieve an efficient analysis that reflects the geometric characteristics of the deep ocean engineering basin. The developed numerical method was validated through comparison with the analytical solution. Numerical analyses were conducted for the boundary value problem of the wavemaker according to various periods and the positions of the movable bottom. The numerical results were used to investigate the effect of the geometric characteristics of the deep ocean engineering basin on the transfer function of the wavemaker, and the effect of depth on wave generation was checked by changing the position of the movable bottom. To efficiently utilize the various results of the boundary element method, a meta-model, an approximate model of the transfer function of the wave maker, was developed using a thin plate spline interpolation model. The validity of the developed meta-model was confirmed through a comparison of the results of the model tests.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.32
no.4
/
pp.136-142
/
2022
The crystal structure, grain growth behavior, and dielectric properties of BaTiO3 have been studied with the addition of Dy2O3. The powders were synthesized at ratios of (100-x)BaTiO3-xDy2O3 (mol%, x = 0, 0.5, 1.0, 2.0) by a conventional solid-state synthesis, and the powder compacts were sintered at 1250℃ for 2 hours in air. As the amount of added Dy2O3 was increased, the crystal structure of the sintered samples changed from a tetragonal to a pseudo-cubic structure, and the tetragonality decreased. In addition, a secondary phase of Ba12Dy4.67Ti8O35 appeared when Dy2O3 was added. The average grain size after sintering decreased and abnormal grains appeared as the amount of Dy2O3 increased. It can be explained that the grain growth behavior of the Dy2O3 added-BaTiO3 occurs due to the two-dimensional nucleation and growth, and is governed by the interface reaction. Further, the correlation between crystal structure, microstructure, and dielectric properties was discussed.
Maglev rail joints are vital components serving as connections between the adjacent F-type rail sections in maglev guideway. Damage to maglev rail joints such as bolt looseness may result in rough suspension gap fluctuation, failure of suspension control, and even sudden clash between the electromagnets and F-type rail. The condition monitoring of maglev rail joints is therefore highly desirable to maintain safe operation of maglev. In this connection, an online damage detection approach based on three-dimensional (3D) convolutional neural network (CNN) and time-frequency characterization is developed for simultaneous detection of multiple damage of maglev rail joints in this paper. The training and testing data used for condition evaluation of maglev rail joints consist of two months of acceleration recordings, which were acquired in-situ from different rail joints by an integrated online monitoring system during a maglev train running on a test line. Short-time Fourier transform (STFT) method is applied to transform the raw monitoring data into time-frequency spectrograms (TFS). Three CNN architectures, i.e., small-sized CNN (S-CNN), middle-sized CNN (M-CNN), and large-sized CNN (L-CNN), are configured for trial calculation and the M-CNN model with excellent prediction accuracy and high computational efficiency is finally optioned for multiple damage detection of maglev rail joints. Results show that the rail joints in three different conditions (bolt-looseness-caused rail step, misalignment-caused lateral dislocation, and normal condition) are successfully identified by the proposed approach, even when using data collected from rail joints from which no data were used in the CNN training. The capability of the proposed method is further examined by using the data collected after the loosed bolts have been replaced. In addition, by comparison with the results of CNN using frequency spectrum and traditional neural network using TFS, the proposed TFS-CNN framework is proven more accurate and robust for multiple damage detection of maglev rail joints.
Recent recommendation system studies apply various deep learning models to represent user and item interactions better. One of the noteworthy studies is ONCF(Outer product-based Neural Collaborative Filtering) which builds a two-dimensional interaction map via outer product and employs CNN (Convolutional Neural Networks) to learn high-order correlations from the map. However, ONCF has limitations in recommendation performance due to the problems with CNN and the absence of side information. ONCF using CNN has an inductive bias problem that causes poor performances for data with a distribution that does not appear in the training data. This paper proposes to employ a Vision Transformer (ViT) instead of the vanilla CNN used in ONCF. The reason is that ViT showed better results than state-of-the-art CNN in many image classification cases. In addition, we propose a new architecture to reflect side information that ONCF did not consider. Unlike previous studies that reflect side information in a neural network using simple input combination methods, this study uses an independent auxiliary classifier to reflect side information more effectively in the recommender system. ONCF used a single latent vector for user and item, but in this study, a channel is constructed using multiple vectors to enable the model to learn more diverse expressions and to obtain an ensemble effect. The experiments showed our deep learning model improved performance in recommendation compared to ONCF.
Amid the explosive growth of various metaverse platforms, there is no unified indicator to measure, analyze, and evaluate based on customer experience. Therefore, the usability evaluation factors in metaverse were identified through a heuristic methodology and literature review, to evaluate the metaverse, a two-to three-dimensional virtual world platform. A measurable system was established by subdividing 20 items in 5 fields, including user control, information structure, design and content, and usage environment, derived through Delphi technique. Based on this, after experiencing the actual contents of major metaverse platforms such as Roblox and Zepeto, usability was evaluated and comparative verification was conducted. As a result, it was estimated that metaverse user experience could be improved as its utility was derived relatively high in terms of user control and content. This study constitutes a theoretical contribution by extending the usability evaluation system, which has been widely used in the field of service design, to the fields of extended reality and mixed reality. At the same time, it has practical key findings of providing basic judgment standards to stakeholders in the metaverse field, as well as policy implications for digital capability enhancement and industry revitalization.
Journal of Korean Society of Disaster and Security
/
v.15
no.2
/
pp.37-44
/
2022
As the frequency of torrential rains and typhoons increases due to climate change, the frequency of occurrence of debris flow is also increasing. In particular, in the case of Kangwon-do, the occurrence of damage caused by mountain disasters is increasing as it has a topographical characteristic where the mountains and the coast are in contact. In order to analyze the flow characteristics in the sedimentary part of the debris flow, input data were constructed through numerical maps and field data, and a two-dimensional model, FLO-2D, was simulated. The damaged area was divided into the inflow part of the debris flow, the village center, and the vicinity of the port, and the flow center and flow velocity of the debris flow were simulated and compared with field survey data. As a result, the maximum flow depth was found to be 2.4 m at the debris flow inlet, 2.7 m at the center of the village, and 1.4 m at the port adjacent to the port so the results were similar when compared to the field survey. And in the case of the maximum flow velocity, it was calculated as 3.6 m/s at the debris flow inlet, 4.9 m/s in the center of the village and 1.2 m/s in the vicinity of the port, so It was confirmed that the maximum flow center occurred in the section where the maximum flow rate appeared.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.