• Title/Summary/Keyword: Two-dimensional

Search Result 12,536, Processing Time 0.044 seconds

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

Layout Principles of Renaissance Classicism Architectural Style and Its Application on Modern Fashion Design - Focused on Classic Style Fashion after the Year 1999 - (르네상스 고전주의 건축양식의 조형원리와 현대패션디자인에의 적용 - 1999년 이후 클래식 스타일 패션을 중심으로 -)

  • Lee, Shin-Young
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.2
    • /
    • pp.261-276
    • /
    • 2010
  • The analysis of an art trend in the principle dimension starts by observing the object of work in the perspective of formative composition and recognizing it as a universal system. It can be said that it is consistent with an interpretation method for a form theory of formal history by Heinrich W$\ddot{o}$lfflin, a leading form critic in art criticism. Hence, the purpose of this study was to find out what are the formative principles in Renaissance Classicism as a design principle to be applicable to modern fashion by reviewing the formative characteristics of Renaissance Classicism Architecture with which W$\ddot{o}$lfflin directly dealt. As for the theoretical literature review, I used W$\ddot{o}$lfflin's theoretical framework and looked at the Renaissance Classicism Architecture that he studied and examined the possibility of utilizing his theory as a layout principle and the characteristics. As for analysis of design cases, I applied the aforementioned architecture layout principle to modern fashion and conducted case study analysis to delve into distinctive layout principles found in fashion. The study showed that the Renaissance Classicism Architectural Style is marked by linearity, planarity, closing and multiple unity: linearity was expressed in the observation form in fixed frontal view and an emphasis on a tangible silhouette homeogenous and definite line structures; planarity was achieved in the form of paralleled layers of frontal view element, planarity style, and identical and proportional repetition of various sizes.; closing signified the pursuit of complete and clear regularity, and architecture developed in a constructive phase through organizational inevitability and absolute invariability.; multiple unity was expressed in self-completedness and independent parallel of discrete forms and harmony of emphasized individual elements in a totality. Applying these layout characteristics of the Renaissance Classicism Architectural style and to see their individual expressive features, I found out that in adopting layout principles of the Renaissance Classicism Architecture to modern fashion, it turned out to be an emphasis of individual silhouettes, a flattened space, completed objects, organic harmony among independent parts: the emphasis of individual silhouettes was expressed in individual definitiveness of formative lines of clothes in accordance with body joints and an emphasis on formative lines of clothes; the flattened space was marked by single layer structure, planarity of elements of clothes, and listing arrangement by appropriate proportion.; the completedness of the objects was expressed by the stationary state where overall image is fixed, the construction of homogeneous and complete space, and absolute inevitability of internal layout in proportion; lastly, organic harmony of independent parts was stressed in independent completedness of each detail, and organic harmony of the whole. The expressive features would lead to a unique expression style of linear emphasis, proportion, constructive forms, and two-dimensional arrangement. The meaning of this study is follows: The characteristics of art school of thought are given shape by appling & analysing the architectural layout principles of historical art school of thought to modern fashion in the view point of formal construction dimension. The applied possibility of historical art school of thought as the source of inspiration about the fashion design is extended.

The Crystal Structure of Hydroazonium Diphosphate, $N_2H_6H_4(PO_4)_2$ (Hydrazonium Diphosphate, $N_2H_6H_4(PO_4)_2$의 結晶構造)

  • Koo, Chung-Hoe;Ahn, Choong-Tai;Kim, Sung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 1965
  • Hydrazonium diphosphate crystallizes with the space-group symmetry $P2_1/C.$ There are two formular units of $N_2H_6H_4(PO_4)_2$ in the unit cell, for which $a = 4.52{\pm}0.02, b = 8.06{\pm}0.03, c = 10.74{\pm}0.03{\AA}\;and\; {\beta} = 100{\pm}0.5^{\circ}.$ The determination of the crystal structure was carried out by means of Patterson, Fourier and difference syntheses. The phosphate group has configuration of nearly regular tetrahedron with the mean P-O distance of $1.55{\AA}.$ The N-N distance found is $1.40{\AA},$ which corresponds to previously reported values for the $N_2H_6^{++} \;ion \;in\; N_2H_6SO_4.$ A molecule has a transform with a center of symmetry in it. Each nitrogen atom forms three hydrogen bonds with the N…O distances 2.62, 2.79 and $2.89{\AA}.$ And a O…O hydrogen bond between different phosphate groups is found with the distance $2.63{\AA}.$ The structure is held together by three-dimensional network of the strong hydrogen bonds.

  • PDF

Current Status of the Synchrotron Small-Angle X-ray Scattering Station BL4C1 at the Pohang Accelerator Laboratory

  • Jorg Bolze;Kim, Jehan;Huang, Jung-Yun;Seungyu Rah;Youn, Hwa-Shik;Lee, Byeongdu;Shin, Tae-Joo;Moonhor Ree
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.2-12
    • /
    • 2002
  • The small-angle X-ray scattering (SAXS) beamline BL4C1 at the 2.5 GeV storage ring of the Pohang Accelerator Laboratory (PAL) has been in its first you of operation since August 2000. During this first stage it could meet the basic requirements of the rapidly growing domestic SAXS user community, which has been carrying out measurements mainly on various polymer systems. The X-ray source is a bending magnet which produces white radiation with a critical energy of 5.5 keV. A synthetic double multilayer monochromator selects quasi-monochromatic radiation with a bandwidth of ca. 1.5%. This relatively low degree of monochromatization is sufficient for most SAXS measurements and allows a considerably higher flux at the sample as compared to monochromators using single crystals. Higher harmonics from the monochromator are rejected by reflection from a flat mirror, and a slit system is installed for collimation. A charge-coupled device (CCD) system, two one-dimensional photodiode arrays (PDA) and imaging plates (IP) are available its detectors. The overall performance of the beamline optics and of the detector systems has been checked using various standard samples. While the CCD and PDA detectors are well-suited for diffraction measurements, they give unsatisfactory data from weakly scattering samples, due to their high intrinsic noise. By using the IP system smooth scattering curves could be obtained in a wide dynamic range. In the second stage, stating from August 2001, the beamline will be upgraded with additional slits, focusing optics and gas-filled proportional detectors.

Kinematic Analysis of Deff Motion in High Bars (철봉운동 Deff 동작의 운동학적 분석)

  • Back, Jin-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2006
  • The purpose of this study is to prove the kinematical characteristics of Deff motion, the high bar performance, in terms of flying phases so that we can provide basic sources for improving gymnastic performance. To do this, we selected and analyzed the performance of two athletes who did Deff motion in the high bar competition of male artistic gymnastic in the 22nd Universiade 2003 Daegu. We drew the conclusions from the kinematical factors that were came out through analyzing three-dimensional cinematography of the athletes' movements, by using a high speed video camera. To make a successful performance, a performer releases the bar at a height of a high bar vertically and at a height of 82cm horizontally, and the flying performance should be made without moving forward, as maintaining the proper balance, in order to rise over 118cm high during the flying phase. When the performer is releasing the bar, an increase of the vertical speed in the center of the body and extension of a knee joint and a hip joint contribute to increasing a flying height. And when the moving body is twisted, leaning to left side is caused by the winding movement of a knee joint, which causes an unstable bar grasp. To grasp the bar stably, just before releasing the performer should gain propulsive force from twisting rotation through increasing the speed of shoulder rotation. And before the peak point, the performer should make sure of a body rotation distance over $164^{\circ}$ so that he or she can do an aerial rotary performance smoothly. When grasping the high bar, the center of the body should be above the bar and the angle of shoulder rotation should be maintained close to $540^{\circ}$ simultaneously. he high point performance(S1) has more speed on an ascending phase and less speed on a descending phase than the low point performance (S2). At the peak point, both the rotation angle of the body and that of the shoulder in high point performance are big as well. In conclusion, it is shown that a performer can make a jump toward the high bar easily with the body straight because the performer can hold the upper part of the body erect early in a descending phase.

A Kinematic Analysis of the Defence Types during Body Lock Technique in the Ground Wrestling (그라운드 레슬링 가로들기 공격 시 수비 유형의 운동학적 분석)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.155-164
    • /
    • 2007
  • This study is to find out effective defensive type by analysis on differences among three different defence types of the body lock technique in the ground wrestling. The subjects are 5 athletes who are in 60kg weight class. To get the kinematic analysis seven ProReflex MCU-240(Motion Capture Unit), infrared rays cameras, which was produced by Qualisys, were used to get a two-dimensional coordinate. Following are the analysis result from kinematic factors such as time element, speed element and angular element. 1. During position of ground wrestling, the average necessary time until defender's hip joint touches the mat for Phase1 was $0.34{\pm}0.14sec$ at side position was the shortest space of time out of three types, and Phase2 was $0.21{\pm}0.02sec$ at front position was the shortest space of time out of three types. Moreover, side defence position was the shortest for total average necessary time with $0.78{\pm}0.05sec$. 2. The movement change for hip joint was $57.21{\pm}20.17cm$ for front, $43.35{\pm}7.13cm$ for rear, and $18.67{\pm}10.24cm$ for side at Phase1 and $42.08{\pm}17.56cm$ for side, $16.61{\pm}6.34cm$ for front, and $1.48{\pm}1.29cm$ for rear at Phase2. 3. Movement speed of hip joint at defensive type were most effective in success and fail rate at Phase 1 and its frontal average speed was fastest with $1.01{\pm}0.23m/s$ following by $0.52{\pm}0.15m/s$ for side, and $0.62{\pm}0.15m/s$ for rear. The average for total change of speed is $0.79{\pm}0.32m/s$ for front, $0.78{\pm}0.17m/s$ for side, and $0.49{\pm}0.08m/s$ for rear. 4. The joint angle gets smaller in a order by rear, front, and side for the size of hip joint angle and knee angle for different defensive type. 5. As a result of one-way ANOVA on linear velocity for hip joint in frontal defence(phase1) was significance ($\alpha$=.05), but phase 2 was not significance. Synthetically, analyzing on differences among three different defence types which were front, rear, and side of the body lock technique in the ground wrestling, front defensive type was the most effective. In future, there should be more studies regarding on defence at not a laboratory study but a field study to help out wrestler to pertinent techniques to improve the game of wrestling.

Protective Effects of Samul-tang on Oxidative Stress induced Death of H9c2 Cardioblast Cells (배양심근세포의 산화적 손상에 대한 사물탕의 방어효과)

  • Cho Kwon-Il;Jung Seung-Won;Jang Jae-Ho;Lee Dae-Yong;Park Sae-Wook;Lee In;Sin Sun-Ho;Moon Byung-Soon
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.174-186
    • /
    • 2005
  • Objectives : The water extract of Samul-tang (SMT) has traditionally been used for treatment of ischemic heart and brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of SMT rescues cells from these damages. Methods: This study was designed to investigate the protective mechanisms of SMT on oxidative stress-induced toxicity in H9c2 cardiomyoblast cells. Treatment with $H_2O_2$ markedly induced death of H9c2 cardiomyoblast cells in a dose-dependent manner. Results: The characteristics of H20z-induced death of H9c2 showed apparent apoptotic features such as DNA fragmentation and morphological change. However, SMT significantly reduced both H202-induced cell death and morphological change. The decrease of Bc-2 expression by High were inhibited by SMT. In addition, the increase of Bax expression was also inhibited by SMT. The cotreatment of SMT and $H_2O_2$ in H9c2 cells also induced the phosphorylation of ERK in a time-dependent manner. Moreover, PD98059, a specific inhibitor of ERK1/2 attenuated the protective effects of SMT on $H_2O_2-induced$ toxicity in H9c2 cardiomyoblast cells. These results suggest that both ERK1/2 signaling pathways play important roles in the protective effects of SMT on $H_2O_2-induced$ apoptotic death of H9c2 cells. Also, the expression profile of proteins in $H_2O_2$ cardiomyoblast cells were screened by using two-dimensional (2-D) gel electrophoresis. Among 300 spots resolved in 2-D gels, the comparison of control versus apoptosis cells revealed that signal intensity of 17 spots increased and 11 spots decreased. Conclusions: Taken together, this study suggests that the protectiw effects of the water extract of SMT against oxidative damages may be mediated by the modulation of Bc1-2 and Bax expression via the regulation of the ERK signaling pathway.

  • PDF

Phosphorylated Proteins of Mitogen Stimulated-Rat Peripheral Blood Lymphocytes (분열유발인자에 의한 흰쥐 림프구 단백의 인산화)

  • Jou, I-Lo;Ko, Sung-Soo;Ahn, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.121-130
    • /
    • 1993
  • This study was done to classify the proteins involved in the specific phosphorylation using the rat peripheral blood lymphocytes (rPBL) stimulated with mitogens, phorbol 12-myristate 13-acetate (PMA) and concanavalin A (Con A). The lymphocytes were incubated with $^{32}P-orthophosphate$ before PMA or Con A stimulation. The migration patterns of the phosphorylated proteins of mitogen-treated rPBL in two dimensional electrophoretic fields were analyzed after autoradiography. The stimulation of the lymphocytes with PMA and Con A increased the phosphorylation of thirteen protein fractions. The phosphorylation intensities of the protein spots differ to the treatments of the cells with specific kinase inhibitors, H-7 and W-7. These protein fractions were grouped into 3 classes, namely, PKC-mediated, CaM kinase-mediated, and other kinase mediated proteins. The effect of the duration of the stimulation on the phosphorylated behaviors occurred concurrently, not sequentially, although each individual protein fraction had a different time for the peak phosphorylation during the stimulation period upto 30 minutes. The phosphoproteins found in the cytosolic soluble fraction were phosphorylated prior to those in the pellet, whose phosphorylations were sustained at a high level for over 10 minutes. The above results suggest that the early events in lymphocyte activation involve 3 different sets of proteins which are phosphorylated by CaM kinase, PKC and other kinases, and those kinases do not work sequentially, but rather, independently or cooperatively.

  • PDF

Biomechanical Analysis of a Combined Interspinous Spacer with a Posterior Lumbar Fusion with Pedicle Screws (척추경나사못을 이용한 유합술과 동반 시술된 극돌기간 삽입기구의 생체역학적 연구)

  • Kim, Y.H.;Park, E.Y.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.276-282
    • /
    • 2015
  • Recently, during the multi-level fusion with pedicle screws, interspinous spacer are sometimes substituted for the most superior level of the fusion in an attempt to reduce the number of fusion level and likelihood of degeneration process at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the interspinous spacer combined with posterior lumbar fusion with a previously-validated 3-dimensional FE model of the intact lumbar spine (L1-S1). The post-operative models were made by modifying the intact model to simulate the implantation of interspinous spacer and pedicle screws at the L3-4 and L4-5. Four different configurations of the post-op model were considered: (1) a normal spinal model; (2) Type 1, one-level fusion using posterior pedicle screws at the L4-5; (3) Type 2, two-level (L3-5) fusion; (4) Type 3, Type 1 plus Coflex$^{TM}$ at the L3-4. hybrid protocol (intact: 10 Nm) with a compressive follower load of 400N were used to flex, extend, axially rotate and laterally bend the FE model. As compared to the intact model, Type 2 showed the greatest increase in Range of motion (ROM) at the adjacent level (L2-3), followed Type 3, and Type 1 depending on the loading type. At L3-4, ROM of Type 2 was reduced by 34~56% regardless of loading mode, as compared to decrease of 55% in Type 3 only in extension. In case of normal bone strength model (Type 3_Normal), PVMS at the process and the pedicle remained less than 20% of their yield strengths regardless of loading, except in extension (about 35%). However, for the osteoporotic model (Type 3_Osteoporotic), it reached up to 56% in extension indicating increased susceptibility to fracture. This study suggested that substitution of the superior level fusion with the interspinous spacer in multi-level fusion may be able to offer similar biomechanical outcome and stability while reducing likelihood of adjacent level degeneration.

Modeling the Flushing Effect of Multi-purpose Weir Operation on Algae Removal in Yeongsan River (영산강 다기능보 운영에 따른 플러싱 및 조류 배제 효과 모델링)

  • Chong, Sun-a;Yi, Hye-suk;Hwang, Hyun-sik;Kim, Ho-joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.563-572
    • /
    • 2015
  • The purpose of this study was to model the effect of flushing discharge on algae removal by multi-purpose weir operation in Yeongsan River (Seungchon Weir) using a 3-dimensional (3D) model. The chlorophyceae Eudorina sp. formed bloom in May 2013. Flushing discharge was conducted in two different ways for algal bloom reduction. To elucidate the spatial variability, a high-resolution 3D model, ELCOM-CAEDYM, was used to simulate the spatial variations of water quality and chl-a over a month. The results showed that ELCOM-CAEDYM could reproduce highly spatially resolved field data at low cost, and showed very good performance in simulating the pattern of algal bloom occurrence. The effect of each flushing discharge operation was analyzed with the results of modeling. The results of case 1, flushing discharge using an open movable weir, showed that the algal bloom between the Seochang Bridge and the Hwangryong River junction is rapidly flushed after operating the movable weir, but the residual algae remained in the weir pool as the discharge decreased. However, the results of case 2, fixed weir overflow with a small hydropower stop, showed that most of the algae was removed after flushing discharge and the effect of algae removal was much bigger than that in case 1, as per modeling results and observed data.