• Title/Summary/Keyword: Two-color

Search Result 3,811, Processing Time 0.028 seconds

Prediction of Flash Generation in Two-Color Injection Molding using The Rapid Heat Cycle Molding Technology (금형 급속 가열-냉각이 적용된 이색사출성형의 플래쉬 발생 예측)

  • Park, H.P.;Cha, B.S.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • In case of thin-wall two-color injection molding, flashing often occurs when molten polymer flows into small gap at the parting line in mold with high pressure or under the unbalanced clamping force condition. In this study, flashing was examined in the production of thin-wall notebook case with large area when the rapid heat cycle molding (RHCM) technology was applied to the two-color injection molding. The effects of the RHCM technology on the part properties and weld-lines were compared with conventional injection molding. The flashing caused by the clamping device of the two-color injection molding machine was examined and compared by experiments and CAE analyses.

A NEW CATALOG OF AGB STARS BASED ON INFRARED TWO-COLOR DIAGRAMS

  • Suh, Kyung-Won;Hong, Jinju
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.4
    • /
    • pp.131-138
    • /
    • 2017
  • We present a new catalog of AGB stars based on infrared two-color diagrams (2CDs) and known properties of the pulsations and spectra. We exclude some misclassified objects from previous catalogs. We identify color areas in two IR 2CDs where most O-rich and C-rich objects listed in previous catalogs of AGB stars are found. By collecting new objects in these color selection areas in the two IR 2CDs, we find candidate objects for AGB stars. By using the color selection method, we identify 3996 new objects in the O-rich areas, 1487 new objects in the C-rich areas, and 295 new objects in the overlap areas of the two 2CDs simultaneously. We have found that 470 O-rich and 9 C-rich objects are Mira variables with positive spectral identification and they are newly identified AGB stars. We present a new catalog of 3828 O-rich AGB stars and 1168 C-rich AGB stars excluding misclassified objects and adding newly identified objects.

Approach for Cloning and Characterization of Blue/White Flower Color Specific cDNA Clones from Two Commelina Species

  • Lee Gunho;Yeon Mooshik;Hur Yoonkang
    • Journal of Plant Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2005
  • To clone blue and white flower color specific genes, mRNA differential display was carried out with two different Commelina species, C. communis Linne for blue color and C. coreana Leveille for. leucantha Nakai for white color. Fifty two and 100 cDNA clones specific for blue or white flower color, respectively, were ranging from 200 to 700 bp in size. From the reverse northern blot analysis, 12 and 7 positive clones were selected for blue and white flower, respectively. These clones appear to be novel cDNAs for these Commelina plants, but not color specific. This finding was supported by the northern blot analysis. However, two clones, B18 and B19, derived from blue flowered Commelina were highly expressed than in the white Commelina species, implying that further study will be valuable. The results indicated that both mRNA display experiment and dot blot analysis may not sensitive enough to clone color-determining gene from the plant, leading to explore more advanced method, like high-density colony array study (HDCA).

THE COLOR CHANGE OF VISIBLE LIGHT-CURED COMPOSITE RESINS AND COMPOMERS ACCORDING TO THE THICKNESS AND BACKGROUND COLOR (광중합형 복합레진과 콤포머의 두께와 배경색에 따른 색변화)

  • Im, Ju-Hwan;Han, Jin-Sun;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.71-77
    • /
    • 2000
  • The color of an esthetic restorative material is controlled primarily by thickness of the material and background color. Although the effects of the two factors on the color coordinates of esthetic dental materials have been reported, the mechanism has not been clarified well enough to explain the effects quantitatively. The purpose of this study was to evaluate the effect of thickness and background color on the color of tooth colored restorative materials quantitatively. One hundred sixty samples were fabricated from two commercial light-cured composite resins and two commercial compomers. The color characteristics and changes in the color coordinates were measured by a tristimulus colorimeter (Model TC-6FX, Tokyo Denshoku Co. Japan) using the CIELAB system. The results were as follows: 1. As thickness increased from 1.0 to 4.0mm, values of $L^*$ $a^*$ $b^*$ changed irregulary for white and dentin color background, but showed no obvious difference in color for black background. 2. The colors of composite resins and compomers were significantly influenced by background color. 3. The color difference was recognized even the same shade name in four representative kinds of composite resins and compomers. 4. As thickness changed, values of color difference for same products and same background color showed constancy, but showed difference for different background color.

  • PDF

Determination of Leaf Color and Health State of Lettuce using Machine Vision (기계시각을 이용한 상추의 엽색 및 건강상태 판정)

  • Lee, J.W.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.256-262
    • /
    • 2007
  • Image processing systems have been used to measure the plant parameters such as size, shape and structure of plants. There are yet some limited applications for evaluating plant colors due to illumination conditions. This study was focused to present adaptive methods to analyze plant leaf color regardless of illumination conditions. Color patches attached on the calibration bars were selected to represent leaf colors of lettuces and to test a possibility of health monitoring of lettuces. Repeatability of assigning leaf colors to color patches was investigated by two-tailed t-test for paired comparison. It resulted that there were no differences of assignment histogram between two images of one lettuce that were acquired at different light conditions. It supported that use of the calibration bars proposed for leaf color analysis provided color constancy, which was one of the most important issues in a video color analysis. A health discrimination equation was developed to classify lettuces into one of two classes, SOUND group and POOR group, using the machine vision. The classification accuracy of the developed health discrimination equation was 80.8%, compared to farmers' decision. This study could provide a feasible method to develop a standard color chart for evaluating leaf colors of plants and plant health monitoring system using the machine vision.

A Method for Predicting the Color Appearance Values of Textiles Depending on Illumination (광원에 따른 텍스타일의 Color Appearance 수치 예측 방법)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.1
    • /
    • pp.68-83
    • /
    • 2020
  • This study suggests a method to predict the color appearance of textiles that shifts depending on illumination variations. The suggested method allows the calculations of lightness, chroma, and hue appearance values from the spectral reflectance values of the textile and illuminant. The accuracy of the method was evaluated through numerical and statistical comparisons between the predicted and the measured color appearance values of 24 fabric samples under CIE standard illuminant D65. As a result, there were excellent agreements between the two data sets with the error values close to zero. The predicted color appearance values of 24 samples under two illuminating (color temperature-luminance) conditions, 2700 K-100 cd/㎡ and 6500 K-100 cd/㎡, were then compared to prove the significant effect of illumination on the color appearance of textiles. The color appearance values were also compared with spectrophotometrically measured physical color attributes, that is, true colors of the samples. The physical color attributes of samples were unchanged; however, differences in color appearance under different conditions were generally much larger than the suprathreshold color difference tolerances discussed in the color science literature. Finally, the magnitude of the illumination effect depending on the physical color attributes of samples was also analyzed.

An Optimal Combination of Illumination Intensity and Lens Aperture for Color Image Analysis

  • Chang, Y. C.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2002
  • The spectral color resolution of an image is very important in color image analysis. Two factors influencing the spectral color resolution of an image are illumination intensity and lens aperture for a selected vision system. An optimal combination of illumination intensity and lens aperture for color image analysis was determined in the study. The method was based on a model of dynamic range defined as the absolute difference between digital values of selected foreground and background color in the image. The role of illumination intensity in machine vision was also described and a computer program for simulating the optimal combination of two factors was implemented for verifying the related algorithm. It was possible to estimate the non-saturating range of the illumination intensity (input voltage in the study) and the lens aperture by using a model of dynamic range. The method provided an optimal combination of the illumination intensity and the lens aperture, maximizing the color resolution between colors of interest in color analysis, and the estimated color resolution at the combination for a given vision system configuration.

  • PDF

Black-white Reflective Liquid Crystal Display Prepared with Two Color Reflective Layers

  • Choi, Woon-Seop;Kim, Min-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.20-23
    • /
    • 2009
  • Black-white reflective cholesteric liquid crystal display was prepared with two color liquid crystal layers, the combination of yellow color liquid crystal and blue color liquid crystal. The rubbing of cholesteric liquid crystal panel affects the brightness and color spectrum due to increase the planar domain texture. The CIE chromaticity coordinate of white is (0.31, 0.31).

3D Expression of Mosaic Wallcovering by Color Difference -Focused on the Warp Direction of String and Woven Mosaics-

  • Lee, Joonhan;Kim, Sun Mee
    • Journal of Fashion Business
    • /
    • v.23 no.6
    • /
    • pp.27-36
    • /
    • 2019
  • This study aimed to analyze the color differences by warp direction of textile mosaics by focusing on two representative textile wallcovering types, woven and string. Mosaics made of string can be expressed as having three-dimensionality based on color differences resulting from the warp direction of the string. String wallcoverings, unlike woven or non-woven wallcoverings, only have vertically oriented warp lamination on the backing paper without weft, and therefore, the reflection and backing color can be expressed differently depending on the angle of the mosaic. In this study, two identical wallcoverings were manufactured using the same materials but using different textile types, woven and string. The wallcoverings underwent die-cutting by each angle and were deployed in cube form. The analysis was based on ISO 5631-1:2015. The color difference between the two wallcoverings, woven and string, was shown as ΔE* 9.29. Based on the standard deviation of the color difference for each mosaic angle, woven ranged from ΔE* 0.09 to 0.94 and string ranged from ΔE* 1.92 to 3.74, showing a larger color difference. Thus, using the color differences of string to create a mosaic wallcovering improved dimensionality.

Performance of the Agilent Microarray Platform for One-color Analysis of Gene Expression

  • Song Sunny;Lucas Anne;D'Andrade Petula;Visitacion Marc;Tangvoranuntakul Pam;FulmerSmentek Stephanie
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.78-78
    • /
    • 2006
  • Gene expression analysis can be performed by one-color (intensity-based) or two-color (ratio-based) microarray platforms depending on the specific applications and needs of the researcher. The traditional two-color approach is well founded from a historical and scientific standpoint, and the one-color approach, when paired with high quality microarrays and a robust workflow, offers additional flexibility in experimental design. Two of the major requirements of any microarray platform are system reproducibility, which provides the means for high confidence experiments and accurate comparison across multiple samples; and high sensitivity, for the detection of significant gene expression changes, including small fold changes across multiple gene sets. Each of these requirements is fulfilled by the Agilent One-color Gene Expression Platform as illustrated by the data included in this study. As a result, researchers have the ability to take advantage of the enhanced performance and sensitivity of Agilent's 60-mer oligonucleotide microarrays, and experience the first commercial microarray platform compatible with both one- and two-color detection.

  • PDF